4.7 Article

Arithmetic optimization algorithm with deep learning enabled airborne particle-bound metals size prediction model

Journal

CHEMOSPHERE
Volume 303, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.134960

Keywords

Air pollution; Deep learning; Arithmetic optimization algorithm; Airborne particle bound metals; LSTM model

Funding

  1. Institutional Fund Projects [IFPHI-258-611-2020]
  2. Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Ask authors/readers for more resources

This paper proposes an arithmetic optimization algorithm (AOA) with a multi-head attention based bidirectional long short-term memory (MABLSTM) model for predicting the size fractionated airborne particle bound metals. The results show that this method can accurately predict the concentration of heavy metals and outperforms other methods.
Recently, heavy metal air pollution has received significant interest in computing the total concentration of every toxic metal. Chemical fractionation of possibly toxic substances in airborne particles becomes a vital element. Among the primary and secondary air pollutants, airborne particulate matter (APM) received considerable internet among research communities owing to the adversative impact on human health. Hence, size distribution details of airborne heavy metals are important in assessing the adverse health effects over the globe. Recently, deep learning models have gained significant interest over the mathematical and statistical prediction models. In this view, this paper presents a novel arithmetic optimization algorithm (AOA) with multi-head attention based bidirectional long short-term memory (MABLSTM) model for predicting the size fractionated airborne particle bound metals. The proposed AOA-MABLSTM technique focuses on the forecasting of the size-fractionated airborne particle bound matter. The presented model intends to examine the concentration of PM and distinct sized-fractionated APM. The proposed model establishes MABLSTM based accurate predictive approaches for atmospheric heavy 83 metals is used for determining temporal trend of heavy metal. The proposed model employs AOA based hyperparameter tuning process to optimally tune the hyperparameters included in the MABLSTM method. To demonstrate the improved outcomes of the AOA-MABLSTM approach, a comparison study is performed with recent models. The stimulation results emphasized the betterment of the presented model over the other methods. Aluminum metal had an RMSE of 73.200 for AOA-MABLSTM. On Cu metal, the AOA-MABLSTM approach had an RMSE of 6.747. On Zn metal, the AOA-MABLSTM system lowered the RMSE by 45.250.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available