4.7 Article

Spectral characteristics of dissolved organic carbon (DOC) derived from biomass pyrolysis: Biochar-derived DOC versus smoke-derived DOC, and their differences from natural DOC

Journal

CHEMOSPHERE
Volume 302, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.134869

Keywords

Biochar-derived dissolved organic carbon; Smoke-derived dissolved organic carbon; Biomass pyrolysis; Spectral characteristics

Funding

  1. National Natural Science Foun-dation of China [42077130]
  2. Natural Science Foundation of Fujian Province, China [2020J01137]

Ask authors/readers for more resources

This study investigates the emissions and spectral characteristics of biochar-derived dissolved organic carbon (BDOC) and smoke-derived dissolved organic carbon (SDOC), and finds differences in their chemistry and bioavailability.
Biochar-derived dissolved organic carbon (BDOC) and smoke-derived dissolved organic carbon (SDOC) are two different biomass-pyrogenic DOCs. They inevitably enter soil and water, then potentially pose different impacts on the chemistry of these media. This study systemically investigated the emissions and spectral characteristics of BDOC and SDOC as well as their differences from natural DOC. The results showed that the emission of SDOC was 1-3 orders of magnitude greater than that of BDOC after biomass pyrolysis. UV-vis spectra indicated that BDOC had higher aromaticity and molecular weight as well as lower polarity than SDOC. The two-dimensional correlation infrared spectrum (2D-PCIS) matrix indicated that BDOC contained more chemical groups with stronger temperature-dependence than SDOC. Fluorescence EEM-PARAFAC analysis showed that BDOC was dominated by macromolecular humic-like substances, while SDOC was primarily composed of small molecules of aromatic protein/polyphenols-like compounds. The fluorescence indicators including humification index (HIX) (0.08-0.76) and biological index (BIX) (1.18-1.72) of SDOC were significantly different from those of BDOC (HIX: 1.64-12.68, and BIX: 0.17-1.62). The higher BIX and more small molecules of aromatic protein/ polyphenols-like compounds indicated SDOC had potentially higher bioavailability and turnover rate in the environment than BDOC. Furthermore, the UV-vis spectral indicator (S275-295) and fluorescence spectral indicators (HIX, and BIX) of BDOC were equivalent to those of natural DOC, whereas these indicators of SDOC were significantly different from those of natural DOC. This study demonstrated that BDOC and SDOC had

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available