4.7 Review

Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO2 nanocomposite interfaces for environmental remediation A review

Journal

CHEMOSPHERE
Volume 305, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135478

Keywords

Interfaces; Mixed-dimensional; Bandbending; Bismuthoxyhalides; Photocatalysis

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2019R1A2C1008746]

Ask authors/readers for more resources

This review discusses the use of mixed-dimensional BiOX/TiO2 interfaces in 0D, 1D, and 2D nanostructures to degrade toxic matter. It explores the optimization of charge carrier generation, separation, and transfer pathways, as well as the combination of different charge transfer mechanisms.
Nowadays, we are critically facing various environmental issues. Among these, water contamination is the foremost issue, which worsens our health and living organisms in the water. Thus, it is necessary to provide an avenue to minimize the toxic matter through the development of facile technique and harmless photocatalyst. In this review, we intended to uncover the findings associated with various 0D, 1D, and 2D nanostructures featured photocatalysts for advancements in interfacial characteristics and toxic matter degradation. In this context, we evaluated the promising mixed-dimensional 0D/2D, 1D/2D, and 2D/2D bismuth oxyhalides BiOX (X = Cl, Br, and I) integrated TiO2 nanostructure interfaces. Tunable mixed-dimensional interfaces highlighted with higher surface area, more heterojunctions, variation in the conduction and valence band potential, narrowed band gap, and built-in electric field formation between BiOX and TiO2, which exhibits remarkable toxic dye, heavy metals, and antibiotics degradation. Further, this review further examines insights into the charge carrier generation, separation, and shortened charge transfer path at reduced recombination. Considering the advantages of type-II, S-scheme, and Z-scheme charge transfer mechanisms in the BiOX/TiO2, we heightened the combination of various reactive species generation. In a word, the concept of mixed-dimensional BiOX/TiO2 heterojunction interface endows toxic matter adsorption and decomposition into useful products. Challenges and future perspectives are also provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available