4.7 Article

Experiments and calibration of a bond-slip relation and efficiency factors for textile reinforcement in concrete

Journal

CEMENT & CONCRETE COMPOSITES
Volume 134, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2022.104756

Keywords

Carbon textile yarns; Pull-out test; Finite element analysis; Interfilament slip; Indirect calibration; Bond-slip

Funding

  1. Swedish Research Council (Vetenskapsradet) [2018-03691]
  2. Gdansk University of Technology [DEC-2/2020/ IDUB/I.1]
  3. Swedish Research Council [2018-03691] Funding Source: Swedish Research Council

Ask authors/readers for more resources

This study developed an effective and robust method to consider the interfilament slip in textile reinforcement yarns and the slip between the yarns and concrete. Pull-out tests were carried out to determine the efficiency factors for strength and stiffness, which were found to be very similar.
Textile reinforcement yarns consist of many filaments, which can slip relative each other. At modelling of the global structural behaviour, interfilament slip in the yarns, and slip between the yarns and the concrete can be considered by efficiency factors for the stiffness and strength of the yarns, and by applying a bond-slip relation between yarns and concrete. In this work, an effective and robust method for calibration of such models was developed. Two-sided asymmetrical pull-out tests were carried out, with varying embedment lengths designed to obtain both pull-out and rupture of the textile as failure mode. The efficiency factors for strength and stiffness of the textile were very similar, 34% and 35% respectively. This indicates the stress distribution within a yarn to be uneven in a similar manner for small and large stress levels, and that interfilament slip has a larger influence than variation of filaments' strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available