4.8 Article

Hepatitis B virus-human chimeric transcript HBx-LINE1 promotes hepatic injury via sequestering cellular microRNA-122

Journal

JOURNAL OF HEPATOLOGY
Volume 64, Issue 2, Pages 278-291

Publisher

ELSEVIER
DOI: 10.1016/j.jhep.2015.09.013

Keywords

HBx-LINE1; miR-122; HCC; HBV; miRNA sponge

Funding

  1. National Basic Research Program of China (973 Program) [2014CB542300, 2012CB517603, 2011CB504803]
  2. National Natural Science Foundation of China [81250044, 81401895]

Ask authors/readers for more resources

Background & Aims: Chronic hepatitis B virus (HBV) carriers have a high risk to develop hepatocellular carcinoma (HCC) but the underlying mechanism remains unclear. Recent studies suggest that viral-human hybrid RNA transcripts, which play a critical role in promoting HCC progression, may be the molecules responsible for the development of HCC in HBV infected patients. Here we determine whether HBx-LINE1, a hybrid RNA transcript of the human LINE1 and the HBV-encoded X gene generated in tumor cells of HBV-positive HCC, can serve as a molecular sponge for sequestering miR-122 and promoting liver cell abnormal mitosis and mouse hepatic injury. Methods: Paired tumor and distal normal liver tissue specimens, as well as HBx-LINE1 overexpressing hepatic cells, were used to test the relationship between HBx-LINE1 and miR-122. Levels of HBx-LINE1 and miR-122 were assayed by qRT-PCR and Northern blot. HBx-LINE1-miR-122 binding was analyzed by luciferase reporter assay. Mouse hepatic injury was monitored by tissue staining and serum aspartate transaminase, alanine aminotransferase and total bilirubin measurement. Results: HBx-LINE1 in HBV-positive HCC tissues was inversely correlated with miR-122. Each HBx-LINE1 consists of six miR-122-binding sites, and forced expression of HBx-LINE1 effectively depleted cellular miR-122, promoting hepatic cell epithelial-mesenchymal transition (EMT)-like changes, including beta-catenin signaling activation, E-cadherin reduction and cell migration enhancement. Mice administered with HBx-LINE1 display a significant mouse liver cell abnormal mitosis and hepatic injury. However, all these effects of HBx-LINE1 are completely abolished by miR-122. Conclusions: Our finding illustrates a previously uncharacterized miR-122-sequestering mechanism by which HBx-LINE1 promotes hepatic cell EMT-like changes and mouse liver injury. (C) 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available