4.5 Article

A potential pathogenic hypoxia-related gene HK2 in necrotizing enterocolitis (NEC) of newborns

Journal

BMC PEDIATRICS
Volume 22, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12887-022-03664-w

Keywords

Necrotizing enterocolitis; HK2; Hypoxia; Carbohydrate metabolism; Whole transcriptome RNA sequencing

Categories

Ask authors/readers for more resources

This study utilized RNA sequencing to explore the pathogenic mechanisms of necrotizing enterocolitis (NEC) in newborns. It identified the hypoxia-related gene HK2 as a key player in NEC and revealed its potential involvement in carbohydrate metabolism.
Background Necrotizing enterocolitis (NEC) is a disastrous gastrointestinal disease of newborns, and the mortality rate of infants with NEC is approximately 20%-30%. The exploration of pathogenic targets of NEC will be conducive to timely diagnosis of NEC. Methods The whole transcriptome RNA sequencing was performed on NEC samples to reveal the expression of lncRNAs, circRNAs, miRNAs and mRNAs. Using differential expression analysis, cross analysis, target prediction, enrichment analysis, the pathogenic ceRNA network and target was found. Results Preliminarily, 281 DEmRNAs, 21 DEmiRNAs, 253 DElncRNAs and 207 DEcircRNAs were identified in NEC samples compared with controls. After target prediction and cross analyses, a key ceRNA regulatory network was built including 2 lncRNAs, 4 circRNAs, 2 miRNAs and 20 mRNAs. These 20 mRNAs were significantly enriched in many carbohydrate metabolism related pathways. After cross analysis of hypoxia-, carbohydrate metabolism-related genes, and 20 core genes, one gene HK2 was finally obtained. Dendritic cells activated were significantly differentially infiltrated and negatively correlated with HK2 expression in NEC samples. Conclusions The promising pathogenic hypoxia-related gene HK2 has been firstly identified in NEC, which might also involve in the carbohydrate metabolism in NEC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available