4.4 Article

Paired Quasi-Linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms Due to Impulsive Motion

Journal

Publisher

ASME
DOI: 10.1115/1.4034039

Keywords

unsteady flow; thermophoresis; temperature-dependent viscosity; paired quasi-linearization; spectral collocation; bivariate Lagrange interpolation

Funding

  1. National Research Foundation of South Africa [85596]

Ask authors/readers for more resources

This paper presents the motion of unsteady gravity-induced nanofluid flow containing gyrotactic micro-organisms along downward vertical convectively heated surface subject to passively controlled nanofluid. Considering the influence of temperature on the dynamic viscosity during convection and nature of thermal conductivity during heat conduction processes, these thermophysical properties are treated as linear functions of temperature. The governing equations are nondimensionalized by using suitable similarity transformation. The dimensionless nonlinear coupled PDEs are solved using a new pseudo-spectral technique called paired quasi-linearization method ( PQLM). Convergence tests and residual error analysis are also presented to validate the accuracy, solution error, and computational convergence. The proposed PQLM yields accurate results which are obtained after a very few iterations. Minimum coefficients of (root xi/root xRe(x))S-hx with S-c are obtained at final steady stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available