4.8 Article

A multiplexed electrochemical quantitative polymerase chain reaction platform for single-base mutation analysis

Journal

BIOSENSORS & BIOELECTRONICS
Volume 214, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114496

Keywords

Single -based mutation; Multiplexed detection; E-PCR platform; LNA-Mediated PCR

Funding

  1. NSFC [61971294, 61960206012, 32071407, 62003023]
  2. Beijing Natural Science Foundation [7212204]

Ask authors/readers for more resources

An electrochemical quantitative polymerase chain reaction (E-PCR) platform was developed for multiplexed and quantitative analysis of single-based mutations (SbM) in limited and precious samples, achieving ultra-high sensitivity and specificity.
Detection of single-based mutation (SbM), which is of ultra-low abundance against wild-type alleles, are typically constrained by the level of multiplexing, sensitivity for single-base resolution and quantification accuracy. In this work, an electrochemical quantitative polymerase chain reaction (E-PCR) platform was developed for multi-plexed and quantitative SbM analysis in limited and precious samples with single-nucleotide discrimination. A locked nucleic acid (LNA)-mediated multiplexed PCR system in a single, closed tube setup was firstly constructed to selectively amplify the SbM genes while suppressing the wild-type alleles. The amplicons were detected simultaneously through hybridization with the sequence-specific hairpin probes anchored on a reduced graphene oxide-gold nanoparticles functionalized electrode surface. With the inclusion of an LNA-mediated PCR step upstream of the electrochemical detection, we improved the limit of detection (LOD) by 2 orders of magnitude, down to an ultralow-level of 5 copies mu L-1. The platform achieved an ultra-sensitive and specific detection with 0.05% against a background of 10, 000 copies of wild-type alleles. It is highly adaptive and has the potential to enable expanded multiplexed detection in parallel, thus providing a universal tool for multiplexed SbM identification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available