4.8 Article

MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs

Journal

BIOSENSORS & BIOELECTRONICS
Volume 216, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114675

Keywords

Cardiomyocytes; Cantilever; Microelectrode array; Field potential; Contraction force

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MSIT) [2020R1A5A8018367]

Ask authors/readers for more resources

This study introduces a drug screening platform based on a microelectrode array integrated SU-8 cantilever, which enables simultaneous measurement of electrophysiology and contractility of cardiomyocytes. The feasibility of this platform is verified through drug tests, and it is found that some drugs have greater toxicity to contractility, highlighting the need for a reliable dual measurement platform for assessing cardiotoxicity.
Drug-induced cardiotoxicity is a potentially severe side effect that can alter the contractility and electrophysiology of the cardiomyocytes. Cardiotoxicity is generally assessed through animal models using conventional drug screening platforms. Despite significant developments in drug screening platforms, the difficulty in measuring electrophysiology and contractile profile together affects the investigation of cardiotoxicity in potential drugs. Some drugs can prove to be more toxic to contractility than electrophysiology, which demands the need for a reliable, dual, and simultaneous drug screening platform. Herein, we propose the microelectrode array integrated SU-8 cantilever for dual and simultaneous measurement of electrophysiology and contractility of cardiomyocytes. The SU-8 cantilever is integrated with microelectrode array (C-MEA) using conventional photolithographic techniques. Drug tests are conducted to verify the feasibility of the C-MEA platform using three cardiovascular drugs. Clinically recognized drugs, quinidine and verapamil, are used to activate both the hERG channel and the contractile characteristics of cardiomyocytes. The effect of ion channel blockers on the field potential duration (FPD) of the cardiomyocytes is compared with several contractility-based parameters. The contraction-relaxation duration (CRD) profile is relatively close to that of FPD in tested drugs (half-maximal (IC50) toxicities are 1.093 mu M (FPD) and 1.924 mu M (CRD) for quinidine and 166.2 nM (FPD) and 459.4 nM (CRD) for verapamil). Blebbistatin, a known myosin II inhibitor, primarily affects the contractile profile of car-diomyocytes but not their field potential, with no evident correlation between contractility and field potential profiles. The proposed cantilever-based mechano-electrophysiology measurements platform provides a promising and accurate means to assess cardiotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available