4.7 Review

Dynamics of DNA Origami Lattices

Journal

BIOCONJUGATE CHEMISTRY
Volume 34, Issue 1, Pages 18-29

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.bioconjchem.2c00359

Keywords

-

Ask authors/readers for more resources

Hierarchical assembly of programmable DNA frameworks, such as DNA origami, has paved the way for versatile nanometer-precise parallel nanopatterning up to macroscopic scales. However, the dynamics of large-scale lattice assembly of such modules is still poorly understood. This article focuses on the dynamics of two-dimensional surface-assisted DNA origami lattice assembly and prospective three-dimensional assemblies, and summarizes their potential applications.
Hierarchical assembly of programmable DNA frameworks -such as DNA origami -paves the way for versatile nanometer-precise parallel nanopatterning up to macroscopic scales. As of now, the rapid evolution of the DNA nanostructure design techniques and the accessibility of these methods provide a feasible platform for building highly ordered DNA-based assemblies for various purposes. So far, a plethora of different building blocks based on DNA tiles and DNA origami have been introduced, but the dynamics of the large-scale lattice assembly of such modules is still poorly understood. Here, we focus on the dynamics of two-dimensional surface-assisted DNA origami lattice assembly at mica and lipid substrates and the techniques for prospective three-dimensional assemblies, and finally, we summarize the potential applications of such systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available