4.7 Article

Comparison of Electron Capture Rates in the N=50 Region using 1D Simulations of Core-collapse Supernovae

Journal

ASTROPHYSICAL JOURNAL
Volume 939, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/ac9306

Keywords

-

Funding

  1. Michigan State University
  2. US Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0015904, DE-SC0017955]
  3. US National Science Foundation [PHY-1913554, PHY-1430152, PHY-1927130]
  4. Swedish Research Council [2020-00452]
  5. U.S. Department of Energy (DOE) [DE-SC0015904] Funding Source: U.S. Department of Energy (DOE)
  6. Swedish Research Council [2020-00452] Funding Source: Swedish Research Council

Ask authors/readers for more resources

Recent studies have shown that core-collapse supernova models are sensitive to electron-capture rates on neutron-rich nuclei. In this study, a large number of one-dimensional simulations were performed using updated EC rates. The results demonstrate that the EC rates have a consistent impact on various properties of core-collapse supernovae.
Recent studies have highlighted the sensitivity of core-collapse supernovae (CCSNe) models to electron-capture (EC) rates on neutron-rich nuclei near the N = 50 closed-shell region. In this work, we perform a large suite of one-dimensional CCSN simulations for 200 stellar progenitors using recently updated EC rates in this region. For comparison, we repeat the simulations using two previous implementations of EC rates: a microphysical library with parametrized N = 50 rates (LMP), and an older independent-particle approximation (IPA). We follow the simulations through shock revival up to several seconds post-bounce, and show that the EC rates produce a consistent imprint on CCSN properties, often surpassing the role of the progenitor itself. Notable impacts include the timescale of core collapse, the electron fraction and mass of the inner core at bounce, the accretion rate through the shock, the success or failure of revival, and the properties of the central compact remnant. We also compare the observable neutrino signal of the neutronization burst in a DUNE-like detector, and find consistent impacts on the counts and mean energies. Overall, the updated rates result in properties that are intermediate between LMP and IPA, and yet slightly more favorable to explosion than both.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available