4.7 Article

The Roles of Flux Tube Entropy and Effective Gravity in the Inward Plasma Transport at Saturn

Journal

ASTROPHYSICAL JOURNAL
Volume 937, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-4357/ac85b2

Keywords

-

Funding

  1. NASA Office of Space Science [NAS5-97271]
  2. NASA [NNX12AG81G, NNX15AJ01G, NNX16AQ87G, 80NSSC20K0704, 80NSSC21K1678, 80NSSC19K0822, 80NSSC20K1279, 80NSSC19K0899, 80NSSC22K0310]

Ask authors/readers for more resources

The inward plasma transport in the Saturnian magnetosphere is investigated using a formalism called flux tube interchange stability developed by Southwood & Kivelson. Seven events were selected to analyze three different cases. The results indicate that the flux tube should be moving inward and the entropy of the flux tube plays an important role in braking the plasma inward transport.
The inward plasma transport at the Saturnian magnetosphere is examined using the flux tube interchange stability formalism developed by Southwood & Kivelson. Seven events are selected. Three cases are considered: (1) the injected flux tube and ambient plasmas are nonisotropic, (2) the injected flux tube and ambient plasmas are isotropic, and (3) the injected flux tube plasma is isotropic, but the ambient plasma is nonisotropic. Case 1 may be relevant for fresh injections, while case 3 may be relevant for old injections. For cases 1 and 2, all but one event have negative stability conditions, suggesting that the flux tube should be moving inward. For case 3, the injections located at L > 11 have negative stability conditions, while four out of five of the injections at L < 9 have positive stability conditions. The positive stability condition for small L suggests that the injection may be near its equilibrium position and possibly oscillating thereabouts-hence the outward transport if the flux tube overshot the equilibrium position. The flux tube entropy plays an important role in braking the plasma inward transport. When the stability condition is positive, it is because the entropy term, which is positive, counters and dominates the effective gravity term, which is negative for all the events. The ambient plasma and drift-out from adjacent injections can affect the stability and the inward motion of the injected flux tube. The results have implications for inward plasma transport in the Jovian magnetosphere, as well as other fast-rotating planetary magnetospheres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available