4.7 Article

Evolutionary algorithm based approach for solving transportation problems in normal and pandemic scenario

Journal

APPLIED SOFT COMPUTING
Volume 129, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2022.109576

Keywords

Transportation Problem; COVID-19 Pandemic scenario; Fixed-charge; Multiple vehicles; Genetic algorithm

Ask authors/readers for more resources

The COVID-19 pandemic has presented challenges for transportation companies due to travel restrictions. This study aims to solve a fixed-charge transportation problem during the pandemic and minimize transportation costs between regions with high restrictions. The Genetic Algorithm is used with new operators to handle multiple trips and capacity constraints.
In recent times, COVID-19 pandemic has posed certain challenges to transportation companies due to the restrictions imposed by different countries during the lockdown. These restrictions cause delay and/ or reduction in the number of trips of vehicles, especially, to the regions with higher restrictions. In a pandemic scenario, regions are categorized into different groups based on the levels of restrictions imposed on the movement of vehicles based on the number of active cases (i.e., number of people infected by COVID-19), number of deaths, population, number of COVID-19 hospitals, etc. The aim of this study is to formulate and solve a fixed-charge transportation problem (FCTP) during this pandemic scenario and to obtain transportation scheme with minimum transportation cost in minimum number of trips of vehicles moving between regions with higher levels of restrictions. For this, a penalty is imposed in the objective function based on the category of the region(s) where the origin and destination are situated. However, reduction in the number of trips of vehicles may increase the transportation cost to unrealistic bounds and so, to keep the transportation cost within limits, a constraint is imposed on the proposed model. To solve the problem, the Genetic Algorithm (GA) has been modified accordingly. For this purpose, we have designed a new crossover operator and a new mutation operator to handle multiple trips and capacity constraints of vehicles. For numerical illustration, in this study, we have solved five example problems considering three levels of restrictions, for which the datasets are generated artificially. To show the effectiveness of the constraint imposed for reducing the transportation cost, the same example problems are then solved without the constraint and the results are analyzed. A comparison of results with existing algorithms proves that our algorithm is effective. Finally, some future research directions are discussed. (C) 2022 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available