4.6 Article

Controlling Fermi level pinning in near-surface InAs quantum wells

Journal

APPLIED PHYSICS LETTERS
Volume 121, Issue 9, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0101579

Keywords

-

Funding

  1. DARPA TEE Award [DP18AP900007US]
  2. U.S. Army Research Office Agreement [W911NF1810067]
  3. U.S. Department of Defense (DOD) [W911NF1810067] Funding Source: U.S. Department of Defense (DOD)

Ask authors/readers for more resources

The surface morphology of near-surface InAs quantum wells is closely connected to low-temperature transport, where electron mobility is highly sensitive to the growth temperature of the underlying graded buffer layer. By introducing an In0.81Al0.19As capping layer, the Fermi level in the InAs layer can be tuned.
Hybrid superconductor-semiconductor heterostructures are a promising platform for quantum devices based on mesoscopic and topological superconductivity. In these structures, a semiconductor must be in close proximity to a superconductor and form an Ohmic contact. This can be accommodated in narrow bandgap semiconductors, such as InAs, where the surface Fermi level is positioned close to the conduction band. In this work, we study the structural properties of near-surface InAs quantum wells and find that surface morphology is closely connected to low-temperature transport, where electron mobility is highly sensitive to the growth temperature of the underlying graded buffer layer. By introducing an In0.81Al0.19As capping layer, we show that we change the surface Fermi level pinning of the In0.81Al0.19As thin film as compared to the In0.81Ga0.19As, giving rise to a tuning of the Fermi level in the InAs layer. Experimental measurements show a strong agreement with Schrodinger-Poisson calculations of the electron density, suggesting the conduction band energy of the In0.81Ga0.19As and In0.81Al0.19As surface is pinned to 40 and 309 meV above the Fermi level, respectively. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available