4.6 Article

A multi-junction-based near-field solar thermophotovoltaic system with a graphite intermediate structure

Journal

APPLIED PHYSICS LETTERS
Volume 121, Issue 16, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0115007

Keywords

-

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea - Ministry of Science and ICT [NRF-2019R1A2C2003605, NRF-2022R1C1C2008309]

Ask authors/readers for more resources

In this study, a multi-junction-based near-field STPV system was designed to achieve high-efficiency energy conversion through photon tunneling and optimization of multi-junction PV cells. The use of a genetic algorithm and an artificial neural network provided a better design approach.
A solar thermophotovoltaic (STPV) system can transform incident concentrated solar energy into electrical energy with an efficiency that could be higher than the Shockley-Queisser limit. Near-field thermophotovoltaic (NF-TPV) devices can generate larger electrical power output than traditional far-field TPV devices with the aid of photon tunneling. Moreover, multi-junction PV cells can boost the performance of TPV devices by effectively distributing the absorbed photon energy inside the PV cell. In this work, we design a multi-junction-based near-field STPV system with a practical and high-temperature stable graphite intermediate structure. To optimize the system configuration, we employ a genetic algorithm and a surrogate model based on an artificial neural network, which enables us to suggest a better design approach for the multi-junction-based NF-STPV system between the power output density and power conversion efficiency maximization scenarios. When the concentration factor of the incident solar energy is 5000 and the absorber-to-emitter area ratio is 3, we can achieve a system efficiency of 23%. By introducing a material whose emissivity is as high as a blackbody on the solar absorber, the system efficiency can be further enhanced up to 35%. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available