4.8 Article

Light, Heat and Electricity Integrated Energy Conversion System: Photothermal-Assisted Co-Electrolysis of CO2 and Methanol

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Tailoring Competitive Adsorption Sites by Oxygen-Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass

Yuxuan Lu et al.

Summary: The electrooxidation of 5-hydroxymethylfurfural (HMF) provides a green route to obtain high-value chemicals from biomass. The study reveals the adsorption behavior of HMF and OH- on Co3O4, with oxygen vacancy playing a crucial role. Modulating adsorption sites leads to excellent activity for the HMFOR process.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Imparting CO2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework

Yi-Rong Wang et al.

Summary: This study has successfully prepared COF nanosheets with superior performance using a functionalizing exfoliation agent, providing a new possibility for the development of efficient CO2 electroreduction catalysts.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation-Assisted High-Efficiency H2 Production

Yin Zhu et al.

Summary: The study introduces a novel dual nanoislands structure to enhance the efficiency of hydrogen evolution reaction, requiring low potential to achieve high current density. By optimizing the catalysts structure, superb activity is achieved in the electrolyzer.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Review Chemistry, Multidisciplinary

Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient CO2 Utilization

Meng Lu et al.

Summary: The photo-/electrocatalytic reduction of CO2 and utilization of CO2 as a supporter for energy storage have shown great potential, but face obstacles such as inefficient uptake/activation of CO2 and mass transport in catalysts. Covalent organic frameworks (COFs) have been explored as catalysts for CO2 conversion due to their unique features.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production

Linfeng Fan et al.

Summary: In this study, a new range of high entropy alloy self-supported electrodes were experimentally prepared and exhibited good electrocatalytic performance in glycerol oxidation reaction. By studying the surface atomic configurations, the catalytic active center was identified, and a hybrid alkali/acid flow electrolytic cell was successfully developed for efficient and stable hydrogen evolution and formate production.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

Redox-mediated electrosynthesis of ethylene oxide from CO2 and water

Yuhang Li et al.

Summary: Improved electrochemical conversion of CO2 to EO is achieved using modified catalysts and a paired system, resulting in comparable energy input to existing industrial processes.

NATURE CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Redox-Active Crystalline Coordination Catalyst for Hybrid Electrocatalytic Methanol Oxidation and CO2 Reduction

Sheng-Nan Sun et al.

Summary: In this work, a coordination catalyst model system for hybrid CO2 electroreduction was established for the first time. The performance of the catalyst was significantly improved by adjusting its oxidizability and reducibility under electric fields. This study provides a new design idea for efficient catalysts in hybrid CO2 electroreduction.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Landscaping Covalent Organic Framework Nanomorphologies

Himadri Sekhar Sasmal et al.

Summary: This article reviews the synthetic strategies for controlling the nanomorphologies of covalent organic frameworks (COFs) and examines the impact of dimensionalities on their physicochemical properties and applications. The aim is to improve the performance of COFs in various fields by optimizing their morphological dimensions.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Covalent Organic Frameworks Enabling Site Isolation of Viologen-Derived Electron-Transfer Mediators for Stable Photocatalytic Hydrogen Evolution

Zhen Mi et al.

Summary: The study integrates cyclic diquats into a 2D COF platform, promoting consecutive electron transfer in photochemical processes through multi-component cooperation. The resulting materials combine photosensitizing units and ETMs into one system, exhibiting enhanced hydrogen evolution rate and sustained performance.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Formic Acid Electro-Synthesis by Concurrent Cathodic CO2 Reduction and Anodic CH3OH Oxidation

Xinfa Wei et al.

Summary: This study presents a strategy for efficient formic acid synthesis by conducting concurrent cathodic CO2 reduction and anodic partial methanol oxidation reactions, resulting in significantly lowered potential and high Faraday efficiency in CO2 reduction.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Stable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo-Coupled Electrocatalysts for CO2 Reduction

Meng Lu et al.

Summary: This study designed a series of stable metallophthalocyanine COFs as novel single-site catalysts with outstanding activity and selectivity for electrocatalytic CO2 reduction. Coupled with light, these COFs showed improved efficiency and potential for applications in the field of electrocatalysis.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling

Wenqiang Ma et al.

Summary: Bismoviologens are novel viologen analogues bridged by bismuth, featuring good redox properties and phosphorescence. Due to their unique properties, bismoviologens were fabricated into electrophosphorochromic devices and utilized for the first time as both a photocatalyst and electron mediator in visible light-induced reactions.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes

Xinyi Chen et al.

Summary: A Cu-polyamine hybrid catalyst was developed to significantly enhance the selectivity for ethylene production in CO2 electrochemical conversion. Incorporating polyamine altered surface reactivity, leading to improved product selectivity at high current densities.

NATURE CATALYSIS (2021)

Article Chemistry, Physical

Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface

Zhengxiang Gu et al.

Summary: A rational strategy was demonstrated to achieve a high faradaic efficiency towards C2+ alcohols by constructing copper catalysts with stepped sites in a CO-rich environment. The defect-site-rich copper catalyst enabled the formation of C2+ alcohols with partial current densities of > 100 mA.cm(-2) and achieved a stable alcohol faradaic efficiency of around 60% during a continuous 30-hour operation.

JOULE (2021)

Article Chemistry, Physical

In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution

Jie Hao et al.

Summary: Ni(OH)2 nanosheet arrays were prepared on Ni foam through ultrasonication and exhibited high activity for selective oxidation of methanol to produce formate and hydrogen without CO2 emissions. The method reduces energy consumption for hydrogen evolution from water and simplifies the electrolysis system by allowing easy separation of anodic and cathodic products.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Review Chemistry, Physical

Recent Advances on Electrolysis for Simultaneous Generation of Valuable Chemicals at both Anode and Cathode

Rui Li et al.

Summary: This review highlights the importance of integrating anode and cathode reactions for efficient use of electrical energy in electrocatalysis conversion processes, as well as the production of high-value substances. It provides a comprehensive overview of recent advances in co-electrolysis processes for valuable chemical production, discussing popular reactions such as hydrogen evolution and carbon dioxide reduction integrated with anodic oxidation reactions. Additionally, challenges and future prospects for these integrated reactions are proposed to benefit researchers and facilitate progress in the field.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Divergent Paths, Same Goal: A Pair-Electrosynthesis Tactic for Cost-Efficient and Exclusive Formate Production by Metal-Organic-Framework-Derived 2D Electrocatalysts

Changsheng Cao et al.

Summary: The study introduces a novel approach to simultaneously produce formate on both electrodes through a selective electrocatalytic method, achieving high efficiency and reduced energy input. The coupled reaction system based on MOF-derived catalysts demonstrates excellent performance in formate electrosynthesis, providing high current densities and nearly 100% selectivity on both the anode and cathode.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Implanting Numerous Hydrogen-Bonding Networks in a Cu-Porphyrin-Based Nanosheet to Boost CH4 Selectivity in Neutral-Media CO2 Electroreduction

Yi-Rong Wang et al.

Summary: This study successfully utilized a Cu-porphyrin-based large-scale and ultrathin nanosheet as an electrocatalyst for CO2RR, achieving high CO2 conversion efficiency under neutral conditions. By constructing hydrogen-bonding networks, proton migration and intermediate stabilization were facilitated, providing a new pathway for efficient CO2RR catalyst development.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

CO2 electrolysis to multicarbon products in strong acid

Jianan Erick Huang et al.

Summary: Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. A study found that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. The research achieved a high CO2R efficiency on copper at pH <1 with a single-pass CO2 utilization of 77%.

SCIENCE (2021)

Review Chemistry, Multidisciplinary

Recent advances in innovative strategies for the CO2 electroreduction reaction

Xinyi Tan et al.

Summary: The CO2RR system faces limitations in practical applications due to low current density, poor CO2 utilization, and energy efficiency. To improve its performance, systematic consideration and optimization of each component are necessary. This review focuses on innovative design strategies for tandem catalysts, electrolytes, electrodes, and devices, as well as discussions on opportunities and challenges for future advancements in the CO2RR system.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction

Zhi-Zheng Wu et al.

Summary: Electrochemical carbon dioxide reduction reaction (CO2RR) converts CO2 into value-added chemicals and fuels, addressing renewable energy shortage and environmental pollution. Regulating the oxidation state of catalysts has been identified as an effective method for designing high-performing CO2RR catalysts that can influence catalyst activity and selectivity.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Physical

Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products

Vignesh Kumaravel et al.

ACS ENERGY LETTERS (2020)

Article Chemistry, Multidisciplinary

Porous Pd-PdO Nanotubes for Methanol Electrooxidation

Tian-Jiao Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

Selective Methanol-to-Formate Electrocatalytic Conversion on Branched Nickel Carbide

Junshan Li et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon

Xiaopeng Wang et al.

NATURE COMMUNICATIONS (2020)

Article Engineering, Chemical

Electroreduction of CO2 to CO Paired with 1,2-Propanediol Oxidation to Lactic Acid. Toward an Economically Feasible System

Elena Perez-Gallent et al.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2019)

Article Chemistry, Multidisciplinary

Metal-Organic Framework Coating Enhances the Performance of Cu2O in Photoelectrochemical CO2 Reduction

Xi Deng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion

Zhen Mi et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Green & Sustainable Science & Technology

RSM approach for stochastic sensitivity analysis of the economic sustainability of a methanol production plant using renewable energy sources

Daria Bellotti et al.

JOURNAL OF CLEANER PRODUCTION (2019)

Article Chemistry, Multidisciplinary

Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode

Jun-Ye Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode

Yi Huang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

A CO2 adsorption-enhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production

Xiaofeng Huang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2016)