4.8 Article

Self-Sustaining Fluorination of Active Methylene Compounds and High-Yielding Fluorination of Highly Basic Aryl and Alkenyl Lithium Species with a Sterically Hindered N-Fluorosulfonamide Reagent

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 43, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202211688

Keywords

Active Methylene Compounds; Catalysis; Fluorination; N-F Reagents; Organolithium Species

Funding

  1. National Institutes of Health (NIGMS) [R01GM121660]

Ask authors/readers for more resources

A novel N-fluorosulfonamide reagent NFBB was developed for the high-yielding fluorination of active methylene compounds and the synthesis of highly basic (hetero)aryl and alkenyl compounds with unprecedented high or quantitative yields.
Fluorination of carbanions is pivotal for the synthesis of fluorinated compounds, but the current N-F fluorinating agents have significant drawbacks due to many reactive locations that surround the reactive N-F site. By developing a sterically hindered N-fluorosulfonamide reagent, namely N-fluoro-N-(tert-butyl)-tert-butanesulfonamide (NFBB), we discovered a conceptually novel base-catalyzed, self-sustaining fluorination of active methylene compounds and achieved the high-yielding fluorination of the hitherto difficult highly basic (hetero)aryl and alkenyl lithium species. In the former, the mild and high yield fluorination of active methylene compounds exhibited wide functional group tolerance and its novel catalytic fluorination-deprotonation cycle mechanism was demonstrated by deuterium-tracing experiments. In the latter, NFBB reacted with a variety of highly basic (hetero)aryl and alkenyl lithium species to provide the desired fluoro (hetero)arenes and alkenes in unprecedented high or quantitative yields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available