4.8 Article

Boosting Hydrogen Evolution Reaction by Phase Engineering and Phosphorus Doping on Ru/P-TiO2

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 47, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202212196

Keywords

Electrocatalyst; Hydrogen Evolution Reaction; Hydrogen Spillover; Oxygen Vacancy; Support-Structure Engineering

Funding

  1. Taishan Scholar Program of Shandong Province, China [ts201712045]
  2. National Natural Science Foundation of China [22102079]
  3. Natural Science Foundation of Shandong Province of China [ZR2021YQ10]
  4. Talent Foundation - Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering [STHGYX2207]
  5. Ulsan National Institute of Science and Technology (UNIST) [1.190002.01]

Ask authors/readers for more resources

In this study, a Ru cluster anchored on a trace P-doped defective TiO2 substrate (Ru/P-TiO2) was synthesized as an electrocatalyst for the hydrogen evolution reaction (HER) in alkaline media. The Ru/P-TiO2 exhibited superior activity compared to commercial Pt/C and Ru/TiO2 materials. Experimental and theoretical studies revealed that the rutile-TiO2 crystal phase substrate with rich surface oxygen vacancies facilitated water adsorption and dissociation, while P substitution enhanced hydrogen generation by promoting hydrogen spillover, synergistically enhancing the HER activity.
Synergistic optimization of the elementary steps of water dissociation and hydrogen desorption for the hydrogen evolution reaction (HER) in alkaline media is a challenge. Herein, the Ru cluster anchored on a trace P-doped defective TiO2 substrate (Ru/P-TiO2) was synthesized as an electrocatalyst for the HER; it exhibited a commercial Pt/C-like geometric activity and an excellent mass activity of 9984.3 mA mg(Ru)(-1) at -0.05 V vs. RHE, which is 34.3 and 18.7 times higher than that of Pt/C and Ru/TiO2, respectively. Experimental and theoretical studies indicated that using a rutile-TiO2-crystal-phase substrate enhanced the HER activity more than the anatase phase. Rich surface oxygen vacancies on rutile-TiO2 facilitated the adsorption and dissociation of water, while the partial substitution of Ti4+ with P5+ enhanced H-2 generation by facilitating hydrogen spillover from the Ru site to the surface P site, synergistically enhancing the HER activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available