4.6 Article

Cryobanking of Human Distal Lung Epithelial Cells for Preservation of Their Phenotypic and Functional Characteristics

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1165/rcmb.2021-0507MA

Keywords

epithelial progenitor cells; organoids; cryopreservation; single-cell RNA sequencing

Funding

  1. NHLBI [R01 HL135163, P01 HL108793]
  2. Cystic Fibrosis Foundation [STRIPP20XXO, CARRAR19G0]
  3. Bristol Myers Squibb IDEAL consortium
  4. Bram and Elain Goldsmith Chair in Gene Therapeutics Research
  5. Applied Genomics, Advance Health Science and Pavilion/Regenerative Medicine Institute Flow Cytometry, and Biobank cores at Cedars-Sinai Medical Center

Ask authors/readers for more resources

This study describes a method for cryobanking of epithelial cells from mouse or human lung tissue to preserve their phenotypic and functional characteristics. Comparison analysis showed that cryobanked lung tissue cells were comparable to freshly dissociated cells in both phenotype and function. This method is important for creating an easily accessible tissue resource for the research community and downstream analysis of lung cell function and molecular phenotype.
The epithelium lining airspaces of the human lung is maintained by regional stem cells, including basal cells of pseudostratified airways and alveolar type 2 (AT2) pneumocytes of the gas-exchange region. Despite effective techniques for long-term preservation of airway basal cells, procedures for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single-cell transcriptomic analysis were used to compare cells recovered from cryobanked tissue with those of freshly dissociated tissue. AT2 cells within single-cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HT II-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single-cell transcriptome and their capacity for in vitro organoid formation in three-dimensional cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype and is ideally suited for the creation of an easily accessible tissue resource for the research community.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available