4.8 Article

Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive

Journal

ADVANCED MATERIALS
Volume 34, Issue 42, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202205926

Keywords

charge transport; exciton diffusion; fused-ring electron acceptors; organic solar cells; organoboron

Funding

  1. NSFC [62105030, U21A20101, 21734001, 21875182]
  2. Marsden Fund of New Zealand
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

This study presents a facile strategy to enhance the exciton/charge transport of PM6:Y6-based organic solar cells (OSCs) by using a solid additive, trans-bis(dimesitylboron)stilbene (BBS). The addition of BBS improves the exciton diffusion and charge generation, enhances the crystallization of Y6, and improves the charge-carrier diffusion length. This leads to a higher power conversion efficiency (PCE) of 17.6% in the PM6:Y6:BBS devices compared to the devices without BBS (16.2%).
Efficient exciton diffusion and charge transport play a vital role in advancing the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, a facile strategy is presented to simultaneously enhance exciton/charge transport of the widely studied PM6:Y6-based OSCs by employing highly emissive trans-bis(dimesitylboron)stilbene (BBS) as a solid additive. BBS transforms the emissive sites from a more H-type aggregate into a more J-type aggregate, which benefits the resonance energy transfer for PM6 exciton diffusion and energy transfer from PM6 to Y6. Transient gated photoluminescence spectroscopy measurements indicate that addition of BBS improves the exciton diffusion coefficient of PM6 and the dissociation of PM6 excitons in the PM6:Y6:BBS film. Transient absorption spectroscopy measurements confirm faster charge generation in PM6:Y6:BBS. Moreover, BBS helps improve Y6 crystallization, and current-sensing atomic force microscopy characterization reveals an improved charge-carrier diffusion length in PM6:Y6:BBS. Owing to the enhanced exciton diffusion, exciton dissociation, charge generation, and charge transport, as well as reduced charge recombination and energy loss, a higher PCE of 17.6% with simultaneously improved open-circuit voltage, short-circuit current density, and fill factor is achieved for the PM6:Y6:BBS devices compared to the devices without BBS (16.2%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available