4.8 Article

Electro-Thermal Characterization of Dynamical VO2 Memristors via Local Activity Modeling

Journal

ADVANCED MATERIALS
Volume 35, Issue 37, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202205451

Keywords

local activity; memristors; neuromorphic devices; nonlinear dynamics; vanadium dioxide

Ask authors/readers for more resources

This study presents a model of VO2/SiN Mott threshold switches constructed using the principle of local activity. The model is refined to measurable material properties by considering a minimal set of quasistatic and dynamic electrical and thermal data. It accurately predicts electrical and thermal conductivities and capacitances, as well as locally active dynamics.
Translating the surging interest in neuromorphic electronic components, such as those based on nonlinearities near Mott transitions, into large-scale commercial deployment faces steep challenges in the current lack of means to identify and design key material parameters. These issues are exemplified by the difficulties in connecting measurable material properties to device behavior via circuit element models. Here, the principle of local activity is used to build a model of VO2/SiN Mott threshold switches by sequentially accounting for constraints from a minimal set of quasistatic and dynamic electrical and high-spatial-resolution thermal data obtained via in situ thermoreflectance mapping. By combining independent data sets for devices with varying dimensions, the model is distilled to measurable material properties, and device scaling laws are established. The model can accurately predict electrical and thermal conductivities and capacitances and locally active dynamics (especially persistent spiking self-oscillations). The systematic procedure by which this model is developed has been a missing link in predictively connecting neuromorphic device behavior with their underlying material properties, and should enable rapid screening of material candidates before employing expensive manufacturing processes and testing procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available