4.8 Article

Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing

Journal

ADVANCED MATERIALS
Volume 35, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202207542

Keywords

3D printing; additive manufacturing; block copolymers; hydrogels; peptides

Ask authors/readers for more resources

Describes the synthesis of functional hydrogels from 3-arm diblock copolypeptide stars, which achieve mechanical stability and biological activity through physical and photo-crosslinking, enabling direct ink writing of 3D objects with high precision and biological viability.
Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ss-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria-based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embedded Escherichia coli bacteria as demonstrated via isopropyl ss-d-1-thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D-printed biocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available