4.8 Article

Triple-Function Electrolyte Regulation toward Advanced Aqueous Zn-Ion Batteries

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Site-Selective Adsorption on ZnF2/Ag Coated Zn for Advanced Aqueous Zinc-Metal Batteries at Low Temperature

Dongdong Wang et al.

Summary: This study improves the performance of metallic Zn as an anode material for batteries, especially at low temperatures, by regulating the desolvation and nucleation processes and using ZnF2-Ag nanoparticles-coated Zn foils.

NANO LETTERS (2022)

Article Green & Sustainable Science & Technology

A non-flammable hydrous organic electrolyte for sustainable zinc batteries

Daliang Han et al.

Summary: Aqueous zinc batteries are safer than lithium-ion batteries, but their anodes are susceptible to dendrite failure and side reactions. The authors demonstrate a low-cost electrolyte that involves hydrate salt and organic solvent, proving to be non-flammable. The zinc battery cell delivers excellent performance even at low temperatures of -30 degrees Celsius.

NATURE SUSTAINABILITY (2022)

Article Chemistry, Multidisciplinary

Achieving Highly Reversible Zinc Anodes via N, N-Dimethylacetamide Enabled Zn-Ion Solvation Regulation

Fangfang Wu et al.

Summary: Optimization of electrolyte composition is a practical way to improve the performance of aqueous zinc-ion batteries (ZIBs). In this study, a mixture electrolyte containing 10 vol% of N,N-Dimethylacetamide (DMA) and ZnSO4 was used to enhance the reversibility of Zn plating/stripping. It was found that DMA has the ability to reconstruct the solvation structure of Zn2+ and inhibit dendrite growth on Zn anode.

SMALL (2022)

Article Chemistry, Multidisciplinary

Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries

Nannan Zhang et al.

Summary: In this study, an ultrathin and uniform MXene layer was assembled on the surface of zinc anodes using an in situ spontaneously reducing/assembling strategy. The integrated MXene layer reduced the zinc nucleation energy barrier and provided a more uniformly distributed electric field, resulting in low voltage hysteresis and excellent cycling stability with dendrite-free behaviors in zinc-ion batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries

Li-Li Jiang et al.

Summary: By utilizing a localized high-concentration electrolyte, a uniform and robust solid electrolyte interphase can be achieved on the graphite surface, leading to fast-charging performance and excellent cycling stability of lithium-ion batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Enhanced photocatalytic activity of Zn3(PO4)2/ZnO composite semiconductor prepared by different methods

B. Akhsassi et al.

Summary: The photocatalytic activity of Zn-3(PO4)(2) was effectively enhanced using Zn-3(PO4)(2)/ZnO composites with different synthesis methods. The degradation of Rhodamine B dye was improved under UV irradiations, particularly with 20% ZnO in the solid-state reaction method.

CHEMICAL PHYSICS LETTERS (2021)

Article Multidisciplinary Sciences

A rechargeable zinc-air battery based on zinc peroxide chemistry

Wei Sun et al.

Summary: The study presents a zinc-O-2/zinc peroxide chemistry that operates through a 2e(-)/O-2 process in nonalkaline aqueous electrolytes, allowing highly reversible redox reactions in zinc-air batteries. This innovative ZnO2 chemistry, enabled by water-poor and zinc ion (Zn2+)-rich inner Helmholtz layer, shows superior reversibility and stability compared to alkaline zinc-air batteries.

SCIENCE (2021)

Article Chemistry, Multidisciplinary

Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes

Longtao Ma et al.

Summary: By using a ZnF2 solid ion conductor to isolate Zn metal, the hydrogen evolution in Zn metal batteries has been significantly reduced, leading to improved performance and stability of the batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Toward Planar and Dendrite-Free Zn Electrodepositions by Regulating Sn-Crystal Textured Surface

Shiying Li et al.

Summary: The research investigates the influence of surface structure on the nucleation and deposition of Zn by reconstructing the surface structure of a Zn-metal anode with Sn crystal textures. The high-affinity Zn binding sites of Sn and the high surface energy ensure better wettability from the deposits and promote the lateral growth of Zn crystals, leading to improved stability and cycling performance of the Zn-metal anode.

ADVANCED MATERIALS (2021)

Article Multidisciplinary Sciences

Dynamic interphase-mediated assembly for deep cycling metal batteries

Weidong Zhang et al.

Summary: This study presents a method utilizing anisotropic nanostructures to form dynamic interphases in battery electrolytes, achieving ordered assembly of metal electrodeposits and high anode reversibility. The research demonstrates the promotion of vertically aligned and spatially compact zinc electrodeposits with unprecedented reversibility, as well as uniform growth of compact magnesium and aluminum electrodeposits, offering a general pathway toward energy-dense metal batteries based on earth-abundant anode chemistries.

SCIENCE ADVANCES (2021)

Article Chemistry, Multidisciplinary

Ultra-Fast and Scalable Saline Immersion Strategy Enabling Uniform Zn Nucleation and Deposition for High-Performance Zn-Ion Batteries

Xilian Xu et al.

Summary: An ultrafast and simple method is developed to achieve a stable Zn anode by immersing a Zn plate into an aqueous solution of CuSO4, which forms a uniform and robust protective layer. This leads to long-term cycle life and high efficiency, showing great potential for practical applications in high-performance aqueous Zn-ion batteries.

SMALL (2021)

Article Chemistry, Physical

Dual-Function Electrolyte Additive for Highly Reversible Zn Anode

Shao-Jian Zhang et al.

Summary: The study introduces a simple method using ethylene diamine tetraacetic acid tetrasodium salt (Na(4)EDTA) to suppress the poor reversibility of the Zn anode in aqueous Zn-ion batteries, effectively inhibiting dendrite growth and hydrogen evolution. Additionally, the added EDTA promotes desolvation of Zn, prolonging the electrode lifespan.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Highly stable rechargeable zinc-ion battery using dimethyl sulfoxide electrolyte

W. Kao-ian et al.

Summary: The use of DMSO as an electrolyte for ZIBs shows excellent performance, addressing the issues of low cycling stability and high capacity fading, paving the way for practical applications of ZIBs with improved performance.

MATERIALS TODAY ENERGY (2021)

Article Chemistry, Physical

High-performance dual-ion Zn batteries enabled by a polyzwitterionic hydrogel electrolyte with regulated anion/cation transport and suppressed Zn dendrite growth

Longwei Li et al.

Summary: A high-performance dual-ion Zn battery with a polyzwitterionic hydrogel electrolyte is reported, exhibiting excellent electrochemical performances and stable plating/stripping behaviors. The battery achieves a capacity of 102.5 mA h g(-1) and a retention rate of 87.5% after 600 cycles at 5 A g(-1), making it promising for next-generation wearable energy storage devices.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

pH-Buffer Contained Electrolyte for Self-Adjusted Cathode-Free Zn-MnO2 Batteries with Coexistence of Dual Mechanisms

Zhexuan Liu et al.

Summary: This study investigates a cathode-free Zn-MnO2 battery with dual mechanisms in a mild acidic environment, emphasizing the decisive effect of pH value in the electrolyte on the mechanisms. Through the use of acetic acid as a buffering additive, the fluctuation phenomenon during operation is effectively suppressed, achieving a self-adjusting mechanism and improving battery performance.

SMALL STRUCTURES (2021)

Review Chemistry, Multidisciplinary

Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries

Libei Yuan et al.

Summary: Aqueous Zn-ion batteries have attracted significant attention for their safety, cost effectiveness, and environmental friendliness, but challenges at the Zn/electrolyte interphase, such as dendrite growth and side reactions, still need to be addressed. Research in interfacial engineering has become a growing area of interest, providing effective evaluation techniques and strategies for improvement.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities

Meng Zhao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries

Longtao Ma et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries

Huijun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Multidisciplinary Sciences

Roadmap for advanced aqueous batteries: From design of materials to applications

Dongliang Chao et al.

SCIENCE ADVANCES (2020)

Article Chemistry, Physical

Molecular crowding electrolytes for high-voltage aqueous batteries

Jing Xie et al.

NATURE MATERIALS (2020)

Article Chemistry, Multidisciplinary

Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries

Junnan Hao et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries

Junnan Hao et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes

Yan Jin et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Multidisciplinary Sciences

Revealing the role of crystal orientation of protective layers for stable zinc anode

Qi Zhang et al.

NATURE COMMUNICATIONS (2020)

Article Energy & Fuels

Realizing high zinc reversibility in rechargeable batteries

Lin Ma et al.

NATURE ENERGY (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Dendrites in Zn-Based Batteries

Qi Yang et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte

Xianyong Wu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Energy & Fuels

Advances and issues in developing salt-concentrated battery electrolytes

Yuki Yamada et al.

NATURE ENERGY (2019)

Article Chemistry, Multidisciplinary

Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes

Chong Yan et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Article Multidisciplinary Sciences

Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation

Huayu Qiu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte

Ahmad Naveed et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Multidisciplinary Sciences

High-capacity aqueous zinc batteries using sustainable quinone electrodes

Qing Zhao et al.

SCIENCE ADVANCES (2018)

Article Multidisciplinary Sciences

Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities

Ning Zhang et al.

NATURE COMMUNICATIONS (2017)

Article Chemistry, Multidisciplinary

Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery

Ning Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Materials Science, Multidisciplinary

Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS

E. Diler et al.

CORROSION SCIENCE (2014)