4.8 Review

Emerging Nonplanar van der Waals Nanoarchitectures from 2D Allotropes for Optoelectronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202208321

Keywords

nanoarchitectures; nanoscrolls; nanoshells; nanotubes; spiral nanopyramids; spiral nanowires

Ask authors/readers for more resources

The atomic thickness and mechanical flexibility of 2D van der Waals materials allow for spatial design and construction. Various spatial manipulations can create nonplanar vdW nanoarchitectures with retained and tunable properties. These nanoarchitectures exhibit properties beyond 2D materials and have potential applications in optoelectronics.
The unique atomic thickness and mechanical flexibility of 2D van der Waals (vdW) materials endow them with spatial designability and constructability. It is easy to break the inherent planar construction through various spatial manipulations, thus creating vdW nanoarchitectures with nonplanar topologies. The basic properties before evolution are retained and tunable by architecture-related feature sizes, and other newly generated properties are inspiring as they are beyond the reach of 2D allotropes, bringing great competitiveness for their encouraging applications in optoelectronics. Here, these representative nonplanar vdW nanoarchitectures (i.e., nanoscrolls, nanotubes, spiral nanopyramids, spiral nanowires, nanoshells, etc.) are summarized and their structural evolution processes are elucidated. Their fascinating nascent properties based on their distinctive structural features, focusing on generally enhanced light-matter interactions and device physics, are further introduced. Finally, their opportunities and challenges for in-depth experimental exploration are prospected. It is a brand-new idea to modify the properties of 2D vdW materials from micro- and nanostructural design and evolution, offering a solid platform for twistronics, valleytronics, and integrated nanophotonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available