4.8 Article

Contactless Pulsed and Continuous Microdroplet Release Using Photothermal Liquid Crystals

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 44, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202205385

Keywords

droplet release; drug delivery; liquid crystals; NIR light; photothermal heating

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-National Postdoctoral Research Program [118C462]

Ask authors/readers for more resources

This article presents a delivery technique based on liquid crystal medium that allows for precise release of aqueous microdroplets through contactless stimulation. The technique offers two modes of release, pulsated and continuous, which can be controlled by adjusting the light intensity and position. The technology holds potential in drug release, controlled mixing, and photothermal therapy.
Targeted, on-demand delivery has been of interest using materials responsive to environmental stimuli. A delivery technique based on precise release of aqueous microdroplets from a liquid crystal (LC) medium with contactless stimulation is presented. A nematic LC is doped with a photothermal dye that produces heat under near IR light exposure. The heat is used to overcome the elastic strains in the LC phase, promoting the release of initially entrapped water droplets to the neighboring aqueous solution. Designing the geometry of LC-based emulsions and tuning the light intensity and position allows for manipulation of the release in two distinct modes defined as pulsated and continuous. In the pulsated mode, water droplets are released transiently from the casted water-in-LC emulsion layer based on sweeping by the moving isotropic-nematic phase boundary controlled by light. In the continuous mode, water droplets are ejected continuously from a droplet-shaped water-in-LC emulsion, due to a heating-induced internal flow controlled by light. The droplet release by contactless stimulation is used for the on-demand dosing of dopamine and its oxidizing reagent from isolated reservoirs to obtain an in situ reaction signal for a hydrogen peroxide assay. A new dual-mode release system developed with photothermal LCs holds potential in drug release, controlled mixing, and photothermal therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available