4.8 Article

Facet-Dependent Intrinsic Activity of Single Co3O4 Nanoparticles for Oxygen Evolution Reaction

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202210945

Keywords

cobalt oxides; DFT calculations; single entity electrochemistry; surface facets; water splitting

Ask authors/readers for more resources

This study investigates the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER). The results show that nanocubes with predominant (001) facets exhibit higher activity compared to multi-faceted spheroids. Density functional theory calculations confirm the higher activity of (001) surfaces, attributed to a change in active sites and potential-determining steps.
Deciphering the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER), the limiting reaction in water splitting process, is essential to develop highly active precious metal-free catalysts, yet poorly understood. The intrinsic OER activity of Co3O4 nanocubes and spheroids is probed at the single particle level to unravel the correlation between exposed facets, (001) vs. (111), and activity. Single cubes with predominant (001) facets show higher activity than multi-faceted spheroids. Density functional theory calculations of different terminations and reaction sites at (001) and (111) surfaces confirm the higher activity of the former, expressed in lower overpotentials. This is rationalized by a change in the active site from octahedral to tetrahedral Co and the potential-determining step from *OH to *O for the cases with lowest overpotentials at the (001) and (111) surfaces, respectively. This approach enables the identification of highly active facets to guide shape-selective syntheses of improved metal oxide nanocatalysts for water oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available