4.8 Article

Atomic Modulation and Structure Design of Fe-N4 Modified Hollow Carbon Fibers with Encapsulated Ni Nanoparticles for Rechargeable Zn-Air Batteries

Related references

Note: Only part of the references are listed.
Review Chemistry, Physical

Recent advances in solid-liquid-gas three-phase interfaces in electrocatalysis for energy conversion and storage

Haosong Jiang et al.

Summary: This review discusses the recent progress in the development of solid-liquid-gas three-phase interfaces (SLG-TPIs) for electrocatalytic reactions, including hydrogen evolution reaction, oxygen evolution and reduction reactions, and carbon dioxide reduction reaction, as well as their applications in water splitting, fuel cells, and metal-air batteries. The working mechanism of the three-phase interfaces is described and advanced characterization tools are used to reveal it. The challenges and future opportunities of three-phase interfaces for electrocatalysis are also proposed in this review.

ECOMAT (2022)

Review Chemistry, Multidisciplinary

Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction

Chang-Xin Zhao et al.

Summary: This Review summarizes the regulation strategies for promoting the intrinsic electrocatalytic ORR activity of M-N-C SACs by modulation of the center metal atoms, the coordinated atoms, the environmental atoms, and the guest groups. The study includes both theoretical calculations and experimental investigations to provide a comprehensive understanding of the structure-performance relationship. Proposed future directions involve developing advanced M-N-C SACs for electrocatalytic ORR and other analogous reactions.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Interface Engineering of Air Electrocatalysts for Rechargeable Zinc-Air Batteries

Minghe Luo et al.

Summary: This review emphasizes the importance of heterostructured air electrocatalysts developed through interface engineering in enhancing oxygen electrocatalysis performance, and highlights the potential relationship between interface chemistry and oxygen electrocatalysis kinetics.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Engineering Crystallinity and Oxygen Vacancies of Co(II) Oxide Nanosheets for High Performance and Robust Rechargeable Zn-Air Batteries

Yuhui Tian et al.

Summary: This study combines comprehensive characterizations and density functional theory calculations to investigate the roles of crystallinity and oxygen vacancy levels in Co(II) oxide on ORR and OER activities. The conversion of Co(OH)(2) into oxygen-defective amorphous-crystalline CoO nanosheets with controlled crystallinity and oxygen vacancy levels leads to significantly enhanced electrocatalytic activities. The introduction of amorphous structures and oxygen vacancies in the ODAC-CoO material proves to be an effective strategy for achieving high-performance electrocatalytic ORR and OER processes.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Multidisciplinary Sciences

Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries

Yan Yan et al.

Summary: This study presents a facile strategy for crafting MoS2@Fe-N-C bifunctional electrocatalysts with enhanced ORR and OER performance, leading to robust wearable ZABs with high capacity and outstanding cycling stability. The single-atom-interfaced core/shell design shows lowered energy barriers for both reactions, resulting in efficient metal-air batteries.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2021)

Article Chemistry, Physical

Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction

Qingran Zhang et al.

Summary: The novel ORR catalyst, SA-CoCu@Cu/CoNP, exhibits remarkable catalytic activity, exceptional stability, and excellent methanol tolerance in alkaline media, outperforming commercial platinum carbon under identical testing conditions and being active in acidic media. The improved ORR catalytic performance is attributed to the modified electronic structure of Co-N-x active sites due to an electron donating effect from the embedded nanoparticles and nearby Cu-N-x species.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Phosphorus-Driven Electron Delocalization on Edge-Type FeN4 Active Sites for Oxygen Reduction in Acid Medium

Hengbo Yin et al.

Summary: This study demonstrates that incorporating long-range P into FeN4 sites can enhance electron delocalization and significantly improve the catalytic activity for oxygen reduction reaction. The presence of P results in a lower free energy barrier, leading to superior performance in both acidic and alkaline media, showcasing a potential alternative to Pt/C catalysts in fuel cells and batteries.

ACS CATALYSIS (2021)

Article Chemistry, Multidisciplinary

MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts

Xiaoying Xie et al.

Summary: Fe single-atom catalysts with atomic FeNx active sites show great promise as alternatives to platinum-based catalysts for the oxygen reduction reaction. This study utilized a mesoporous MOF NH2-MIL-101(Al) as a precursor to prepare a series of N-doped carbon supports with well-defined mesoporous structure at different pyrolysis temperatures. The resulting Fe SAC-MIL101-T catalysts showed outstanding ORR activity in alkaline media and excellent performance in zinc-air batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Understanding the Synergistic Effects of Cobalt Single Atoms and Small Nanoparticles: Enhancing Oxygen Reduction Reaction Catalytic Activity and Stability for Zinc-Air Batteries

Zhe Wang et al.

Summary: A highly efficient and durable oxygen reduction reaction (ORR) catalyst consisting of atomically dispersed Co single atoms and small Co nanoparticles co-anchored on nitrogen-doped porous carbon nanocage was reported. The catalyst exhibited outstanding ORR activity and remarkable stability in alkaline media, outperforming Pt/C catalyst. Practical zinc-air battery assembled with this catalyst showed high power density, specific capacity, and cycling stability.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Design of Aligned Porous Carbon Films with Single-Atom Co-N-C Sites for High-Current-Density Hydrogen Generation

Rui Liu et al.

Summary: A carbon film embedded with single-atom Co-N-C sites was designed to achieve exceptional HER performance at high current densities, delivering 500 and 1000 mA cm(-2) in acid with overpotentials of 272 and 343 mV, respectively, and operating stably for at least 32 hours under static conditions. The findings pave the road towards rational design of SACs with improved activity and stability at high current densities in gas-evolving electrocatalytic processes.

ADVANCED MATERIALS (2021)

Article Chemistry, Physical

Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites

Li Jiao et al.

Summary: Replacing scarce and expensive platinum with metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has been impeded by the low active site density and site utilization of M-N-C. These limitations have now been overcome by implementing trans-metalation of Zn-N-4 sites into Fe-N-4 sites.

NATURE MATERIALS (2021)

Article Chemistry, Physical

A Nickel-Decorated Carbon Flower/Sulfur Cathode for Lean-Electrolyte Lithium-Sulfur Batteries

Yuchi Tsao et al.

Summary: By designing a flower-shaped porous carbon structure with nickel nanoparticles, the issues of large polarization, low sulfur utilization, and capacity fade in lithium-sulfur batteries have been addressed. The 3D flower-shaped carbon structure enables short ionic transport lengths, while the small pore diameters and sufficient pore volume are ideal for improving charging performance at low electrolyte to sulfur ratios. The use of Ni nanoparticles on the flower-shaped network improves reaction kinetics, leading to successful demonstration of batteries with high mass loading and good cycle retention.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements

Zhi Qiao et al.

Summary: Integrating PGM-free atomically-dispersed single metal active sites in the carbon support can effectively enhance the performance of PGM catalysts, achieving higher efficiency and sustainability with lower loading. The synergistic interaction between Pt clusters and surrounding FeN4 sites enhances the intrinsic activity of Pt, leading to significantly improved overall catalytic performance and stability.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Physical

Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol

Yafei Fan et al.

Summary: A Ni single-atom catalyst supported on nitrogen-doped carbon was synthesized and utilized for catalytic transfer hydrogenation of furfural to furfuryl alcohol, exhibiting high performance with exceptional TOF and selectivity. The catalyst also showed superior stability and catalytic activity for other unsaturated aldehydes, suggesting potential applications in sustainable technologies.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

Multiscale Construction of Bifunctional Electrocatalysts for Long-Lifespan Rechargeable Zinc-Air Batteries

Chang-Xin Zhao et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Green & Sustainable Science & Technology

Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions

Yuhui Tian et al.

SUSTAINABLE MATERIALS AND TECHNOLOGIES (2020)

Article Multidisciplinary Sciences

Multilayer stabilization for fabricating high-loading single-atom catalysts

Yazhou Zhou et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Surface/interface nanoengineering for rechargeable Zn-air batteries

Tianpei Zhou et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Materials Science, Multidisciplinary

Relating Catalysis between Fuel Cell and Metal-Air Batteries

Matthew Li et al.

MATTER (2020)

Article Chemistry, Multidisciplinary

Self-Adjusting Activity Induced by Intrinsic Reaction Intermediate in Fe-N-C Single-Atom Catalysts

Yu Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Multidisciplinary Sciences

Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation

Yuan Pan et al.

NATURE COMMUNICATIONS (2019)

Article Electrochemistry

Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

Viktor Colic et al.

ELECTROCHIMICA ACTA (2018)

Review Chemistry, Multidisciplinary

A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn-Air Batteries

Hao-Fan Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Article Chemistry, Multidisciplinary

From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries

Ibrahim Saana Amiinu et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Article Chemistry, Multidisciplinary

Carbon-supported Ni nanoparticles for efficient CO2 electroreduction

Mingwen Jia et al.

CHEMICAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives

Jing Fu et al.

ADVANCED MATERIALS (2017)

Review Chemistry, Physical

Energy and fuels from electrochemical interfaces

Vojislav R. Stamenkovic et al.

NATURE MATERIALS (2017)

Review Multidisciplinary Sciences

Combining theory and experiment in electrocatalysis: Insights into materials design

Zhi Wei Seh et al.

SCIENCE (2017)

Review Chemistry, Multidisciplinary

Earth-Abundant Nanomaterials for Oxygen Reduction

Wei Xia et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Review Chemistry, Multidisciplinary

Hollow Nano- and Microstructures as Catalysts

Gonzalo Prieto et al.

CHEMICAL REVIEWS (2016)

Article Chemistry, Physical

Evaluation of Perovskites as Electrocatalysts for the Oxygen Evolution Reaction

Rosalba A. Rincon et al.

CHEMPHYSCHEM (2014)

Article Chemistry, Physical

Stability, Electronic and Magnetic Properties of In-Plane Defects in Graphene: A First-Principles Study

Shyam Kattel et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2012)

Article Materials Science, Multidisciplinary

Complex metallic surface phases in the Al/Cu(111) system: An experimental and computational study

T. Duguet et al.

PHYSICAL REVIEW B (2009)