4.8 Article

Extracellular matrix deformations of the porcine recurrent laryngeal nerve in response to hydrostatic pressure

Journal

ACTA BIOMATERIALIA
Volume 153, Issue -, Pages 364-373

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2022.09.039

Keywords

-

Funding

  1. National Institute on Deafness and Other Communication Disorders [R01-DC-011311]
  2. NIH Cardiovascular Bioengineering Training Program [5T32HL076124]

Ask authors/readers for more resources

Damage to the recurrent laryngeal nerve caused by external compression may contribute to vocal fold paralysis. The study found differences in composition and response to compression between the right and left nerves in pigs. This research sheds light on the etiology of idiopathic vocal fold paralysis.
Damage to the recurrent laryngeal nerve (RLN) caused by supraphysiological compression or tension imposed by adjacent tissue structures, such as the aorta, may contribute to onset of idiopathic unilateral vocal fold paralysis (iUVP) resulting in difficulty speaking, breathing, and swallowing. We previously demonstrated in adolescent pigs that the right RLN epineurium exhibits uniform composition of adipose tissue, with larger quantities along its length within the neck region in contrast to the left RLN that shows greater collagen composition in the thoracic region and greater quantities of adipose tissue in the neck region. In contrast, the epineurium in piglets was primarily composed of collagen tissue that remained uniform along the length of the left and right RLNs. Tensile testing of the left and right RLN in piglets and pigs showed associated differences in strain by RLN side and segment by age. The goal of this study was to investigate how external hydrostatic compression of the RLN affects the nerve's connective tissue and microstructure. RLN segments were harvested from the distal (cervical/neck) regions and proximal (subclavian for the right RLN, thoracic for the left RLN) regions from eight adolescent pigs and nine piglets. RLN segments were isolated and assessed under fluid compression to test hypotheses regarding epineurium composition and response to applied forces. Second harmonic generation (SHG) imaging of epineurial collagen was conducted at 0, 40, and 80 mmHg of compression. The cartesian strain tensor, principal strain (Eps1), and principal direction of the RLN collagen fibers were determined at each pressure step. Significantly larger values of the 1st principal strain occurred in the proximal segments of the pig left RLN when compared to the same segment in piglets (p = 0.001, pig = 0.0287 [IQR = 0.0161 - 0428], piglet = 0.0061 [IQR = 0.0033 - 0.0156]). Additionally, the median transverse strain E-yy) for the second pressure increment was larger in the right proximal segment of pigs compared to piglets (p < 0.001, pig = 0.0122 [IQR = 0.0033 - 0.0171], piglet = 0.0013 [IQR = 0.00001 - 0.0028]). E-yy values were significantly larger in the right proximal RLN versus the left proximal RLNs in pigs but not in piglets (p < 0.001). In contrast to piglets, histological analysis of pig RLN demonstrated increased axial alignment of epineurial and endoneurial collagen in response to compressive pressure. These findings support the hypothesis that the biomechanical response of the RLN to compressive pressure changed from being similar to being different between the right and left RLNs during development in the porcine model. Further investigation of these findings associated with age-related onset of idiopathic UVP may illuminate underlying etiologic mechanisms. (c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available