4.8 Article

Efficient SERS Response of Porous-ZnO-Covered Gold Nanoarray Chips to Trace Benzene-Volatile Organic Compounds

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 14, Issue 42, Pages 47999-48010

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c11682

Keywords

gaseous benzene-VOCs; porous zinc oxide covered gold nanoarray chips; recoverable SERS response; fast and sensitive SERS detection; dual-enhancement mechanism

Funding

  1. National Natural Science Foundation of China
  2. Scientific Instrument Developing Project of the Chinese Academy of Sciences
  3. [52271242]
  4. [11974352]
  5. [52001305]
  6. [E14BBGU52G1]

Ask authors/readers for more resources

This study proposes a simple strategy to achieve highly efficient detection of trace benzene-VOCs (B-VOCs) using a composite chip based on surface-enhanced Raman spectroscopy (SERS). The composite chip shows high selectivity in capturing B-VOCs and exhibits rapid and sensitive SERS responses. Additionally, the chip is recoverable and reusable in SERS response.
Fast and sensitive detection of gaseous volatile organic compounds (VOCs), based on surface-enhanced Raman spectroscopy (SERS), is still a challenge due to their weak interaction with plasmonic metals and overly small Raman scattering cross sections. Herein, we propose a simple strategy to achieve the SERS-based highly efficient detection of trace benzene-VOCs (B-VOCs) based on a composite chip. The composite chip is designed and fabricated via covering the porous zinc oxide on gold nanoarrays by a one-step solution growth method. Such composite chip shows highly selective capture of gaseous B-VOCs (benzene, toluene, nitrobenzene, xylene, and chlorobenzene, etc.), which leads to the rapid and sensitive SERS responses to them. Typically, this chip can response to gaseous toluene within 30 s, and the lowest detectable concentration is below 10 ppb. Further experiments have revealed that there exists an optimal thickness of the ZnO covering layer for the highly efficient SERS response to the B-VOCs, which is about 150 nm. Also, such a composite chip is recoverable in SERS response and hence reusable. The highly efficient SERS response of the composite chip to the B-VOCs is attributed to the porous structure-enhanced molecular adsorption and the electromagnetic-chemical dual enhancement mechanism. This work not only presents a practical SERS chip for the efficient detection of the typical B-VOCs but also provides a deep understand the interaction between the B-VOCs and the ZnO as well as the chemical enhancement mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available