4.3 Article

The improvement of methanol oxidation using nano-electrocatalysts

Journal

JOURNAL OF EXPERIMENTAL NANOSCIENCE
Volume 11, Issue 10, Pages 798-815

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17458080.2016.1185805

Keywords

direct methanol fuel cell; perovskite; nano-electrocatalysis; cyclic voltammetry; methanol catalytic oxidation

Funding

  1. University of Sistan and Baluchestan (USB) [N22/9108994]

Ask authors/readers for more resources

In this study, a nano-scale perovskite LaMnO3 (LaMnO(3)NPs) was synthesised by a rapid microwave-assisted co-precipitation method and characterised by X-ray powder diffraction, Fourier transform infrared, scanning electron microscopy and energy dispersive X-ray techniques. A modified glassy carbon electrode with Pt nanoparticles (PtNPs), functionalised multi-walled carbon nanotubes (CNTs) and LaMnO(3)NPs as multifunctional catalyst was prepared and furthermore, its catalytic activity toward methanol oxidation was investigated. Based on the electrochemical studies, the PtNPs-CNTs-LaMnO(3)NPs nanocomposite showed considerable activity for methanol oxidation in comparison to PtNPs, PtNPs-CNTs and PtNPs-LaMnO(3)NPs. The results displayed the adding of CNTs and LaMnO(3)NPs into PtNPs catalyst and the use of a more porous matrix of chitosan can improve the anode performance for methanol oxidation. The transition metals presence at catalyst structure caused to catalyse the methanol dehydrogenation. The decreasing the poisoning rate of the PtNPs with intermediates and by-products of anodic reaction was observed due to the bi-functional effect electrical and oxygen ion conductive perovskite. Direct methanol fuel cell (DMFC) was designed, assembled and tested with suggested PtNPs-CNTs-LaMnO(3)NPs nanocomposites as anodic catalyst at variety conditions. The effect of experimental factors such as temperature and methanol concentration on DMFC performances was investigated and optimised.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available