4.7 Article

A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 67, Issue 9, Pages 2761-2776

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erw109

Keywords

Oryza sativa L; OsPLS1; premature leaf senescence; ROS; SA; seed dormancy; vacuolar-type H+-ATPase

Categories

Funding

  1. National Natural Science Foundation of China [31271691]
  2. National Key Transform Program [2013ZX08001-002]

Ask authors/readers for more resources

Leaf senescence is a programmed developmental process orchestrated by many factors, but its molecular regulation is not yet fully understood. In this study, a novel Oryza sativa premature leaf senescence mutant (ospls1) was examined. Despite normal development in early seedlings, the ospls1 mutant leaves displayed lesion-mimics and early senescence, and a high transpiration rate after tillering. The mutant also showed seed dormancy attributable to physical (defect of micropyle structure) and physiological (abscisic acid sensitivity) factors. Using a map-based cloning approach, we determined that a cytosine deletion in the OsPLS1 gene encoding vacuolar H+-ATPase subunit A1 (VHA-A1) underlies the phenotypic abnormalities in the ospls1 mutant. The OsPSL1/VHA-A1 transcript levels progressively declined with the age-dependent leaf senescence in both the ospls1 mutant and its wild type. The significant decrease in both OsPSL1/VHA-A1 gene expression and VHA enzyme activity in the ospls1 mutant strongly suggests a negative regulatory role for the normal OsPLS1/VHA-A1 gene in the onset of rice leaf senescence. The ospls1 mutant featured higher salicylic acid (SA) levels and reactive oxygen species (ROS) accumulation, and activation of signal transduction by up-regulation of WRKY genes in leaves. Consistent with this, the ospls1 mutant exhibited hypersensitivity to exogenous SA and/or H2O2. Collectively, these results indicated that the OsPSL1/VAH-A1 mutation played a causal role in premature leaf senescence through a combination of ROS and SA signals. To conclude, OsPLS1 is implicated in leaf senescence and seed dormancy in rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available