4.5 Review

Validity and Reliability of Inertial Measurement Units on Lower Extremity Kinematics During Running: A Systematic Review and Meta-Analysis

Journal

SPORTS MEDICINE-OPEN
Volume 8, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1186/s40798-022-00477-0

Keywords

Inertial measurement unit; Kinematics; Running; Validity; Reliability

Categories

Ask authors/readers for more resources

This review investigated the concurrent validity and test-retest reliability of inertial measurement units (IMUs) for measuring gait spatiotemporal outcomes and lower extremity kinematics of healthy adults during running. The results demonstrated excellent concurrent validity and test-retest reliability for parameters such as stride length, step frequency, ankle angle, and good to excellent validity and reliability for stance time and running speed. However, caution is needed when interpreting the results of IMUs measurement of lower extremity kinematics.
Background Inertial measurement units (IMUs) are useful in monitoring running and alerting running-related injuries in various sports settings. However, the quantitative summaries of the validity and reliability of the measurements from IMUs during running are still lacking. The purpose of this review was to investigate the concurrent validity and test-retest reliability of IMUs for measuring gait spatiotemporal outcomes and lower extremity kinematics of health adults during running. Methods PubMed, CINAHL, Embase, Scopus and Web of Science electronic databases were searched from inception until September 2021. The inclusion criteria were as follows: (1) evaluated the validity or reliability of measurements from IMUs, (2) measured specific kinematic outcomes, (3) compared measurements using IMUs with those obtained using reference systems, (4) collected data during running, (5) assessed human beings and (6) were published in English. Eligible articles were reviewed using a modified quality assessment. A meta-analysis was performed to assess the pooled correlation coefficients of validity and reliability. Results Twenty-five articles were included in the systematic review, and data from 12 were pooled for meta-analysis. The methodological quality of studies ranged from low to moderate. Concurrent validity is excellent for stride length (intraclass correlation coefficient (ICC) (95% confidence interval (CI)) = 0.937 (0.859, 0.972), p < 0.001), step frequency (ICC (95% CI) = 0.926 (0.896, 0.948), r (95% CI) = 0.989 (0.957, 0.997), p < 0.001) and ankle angle in the sagittal plane (r (95% CI) = 0.939 (0.544, 0.993), p = 0.002), moderate to excellent for stance time (ICC (95% CI) = 0.664 (0.354, 0.845), r (95% CI) = 0.811 (0.701, 0.881), p < 0.001) and good for running speed (ICC (95% CI) = 0.848 (0.523, 0.958), p = 0.0003). The summary Fisher's Z value of flight time was not statistically significant (p = 0.13). Similarly, the stance time showed excellent test-retest reliability (ICC (95% CI) = 0.954 (0.903, 0.978), p < 0.001) and step frequency showed good test-retest reliability (ICC (95% CI) = 0.896 (0.837, 0.933), p < 0.001). Conclusions Findings in the current review support IMUs measurement of running gait spatiotemporal parameters, but IMUs measurement of running kinematics on lower extremity joints needs to be reported with caution in healthy adults. Trial Registration: PROSPERO Registration Number: CRD42021279395.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available