4.7 Article

OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 67, Issue 18, Pages 5485-5494

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erw314

Keywords

Apoplastic Fe; citrate efflux; Fe-57 distribution; node; rice; transporter

Categories

Funding

  1. JSPS KAKENHI [16H06296]
  2. Ohara Foundation for Agriculture Research
  3. Grants-in-Aid for Scientific Research [16H06296] Funding Source: KAKEN

Ask authors/readers for more resources

OsFRDL1 expressed in the upper nodes is required for the distribution of Fe to the panicles through solubilizing Fe deposited in the apoplastic part of nodes in rice.Iron (Fe) is essential for plant growth and development, but the molecular mechanisms underlying its distribution to different organs are poorly understood. We found that OsFRDL1 (FERRIC REDUCTASE DEFECTIVE LIKE 1), a plasma membrane-localized transporter for citrate, was highly expressed in the upper nodes of rice at the reproductive growth stage. OsFRDL1 was expressed in most cells of enlarged vascular bundles, diffuse vascular bundles, and the interjacent parenchyma cell bridges of uppermost node I, as well as vascular tissues of the leaf blade, leaf sheath, peduncle, rachis, husk, and stamen. Knockout of OsFRDL1 decreased pollen viability and grain fertility when grown in a paddy field. Iron was deposited in the parenchyma cell bridges, a few of the cell layers of the parenchyma tissues outside of the bundle sheath of enlarged vascular bundles in node I in both the wild-type rice and osfrdl1 mutant, but the mutant accumulated more Fe than the wild-type rice in this area. A stem-fed experiment with stable isotope Fe-57 showed that the distribution of Fe in the anther and panicle decreased in the knockout line, but that in the flag leaf it increased compared with the wild-type rice. Taken together, our results show that OsFRDL1 expressed in the upper nodes is required for the distribution of Fe in the panicles through solubilizing Fe deposited in the apoplastic part of nodes in rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available