4.7 Article

Development of GO/Co/Chitosan-Based Nano-Biosensor for Real-Time Detection of D-Glucose

Journal

BIOSENSORS-BASEL
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/bios12070464

Keywords

GO/Co/chitosan; nano-biosensor; real-time detection; D-glucose; glucose oxidase

Funding

  1. Basic Science Research Programthrough the National Research Foundation ofKorea (NRF)
  2. Ministry of Education (MSIP) [2014R1A2A2A01007323, 2019R1A2C1006793, 2021R1F1A1055676]

Ask authors/readers for more resources

Electrochemical nano-biosensors are widely used in various industries for qualitative and quantitative analyses due to their high sensitivity. This study focused on finding stable and efficient materials for real-time detection. The composite of graphite oxide/cobalt/chitosan was found to have excellent stability and electron transfer capability, and was applied in a bio-electrochemical nano-biosensor. The developed sensor successfully detected D-glucose in real-time over a wide range of concentrations, and maintained stable detection response even after 14 days.
Electrochemical nano-biosensor systems are popular in the industrial field, along with evaluations of medical, agricultural, environmental and sports analysis, because they can simultaneously perform qualitative and quantitative analyses with high sensitivity. However, real-time detection using an electrochemical nano-biosensor is greatly affected by the surrounding environment with the performance of the electron transport materials. Therefore, many researchers are trying to find good factors for real-time detection. In this work, it was found that a composite composed of graphite oxide/cobalt/chitosan had strong stability and electron transfer capability and was applied to a bio-electrochemical nano-biosensor with high sensitivity and stability. As a mediator-modified electrode, the GO/Co/chitosan composite was electrically deposited onto an Au film electrode by covalent boding, while glucose oxidase as a receptor was immobilized on the end of the GO/Co/chitosan composite. It was confirmed that the electron transfer ability of the GO/Co/chitosan composite was excellent, as shown with power density analysis. In addition, the real-time detection of D-glucose could be successfully performed by the developed nano-biosensor with a high range of detected concentrations from 1.0 to 15.0 mM. Furthermore, the slope value composed of the current, per the concentration of D-glucose as a detection response, was significantly maintained even after 14 days.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available