4.6 Review

Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review

Journal

BIOLOGY-BASEL
Volume 11, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/biology11071073

Keywords

NIRS; physical exercise; hemoglobin; muscle oximetry

Categories

Ask authors/readers for more resources

Assessing muscle oxygenation through near-infrared spectroscopy (NIRS) is crucial for evaluating the therapeutic effects of physical exercise in pathology, as it allows the observation of acute or chronic adaptations and provides decision-making guidance.
Simple Summary In recent years, physical exercise has been used as a therapeutic strategy in various clinical conditions, with pleiotropic benefits. Near-infrared spectroscopy (NIRS) has been positioned as a tool to analyze effects on muscle oxygenation, also allowing knowledge of adaptations on microvascular levels and muscle metabolism in subjects with central and peripheral vascular alterations, as well as cardiovascular, metabolic, and/or musculoskeletal diseases. This knowledge can help to guide therapeutic exercise specialists in decision making regarding the prescription and follow up of physical exercise as a therapeutic tool in the observation of acute or chronic adaptations to improve efficiency in the treatment and recovery of these patients. This review presents an overview of the effects of exercise clinical trials on muscle oxygenation in different pathologies and the technical characteristics related to the equipment used. Using muscle oxygenation to evaluate the therapeutic effects of physical exercise in pathologies through near-infrared spectroscopy (NIRS) is of great interest. The aim of this review was to highlight the use of muscle oxygenation in exercise interventions in clinical trials and to present the technological characteristics related to the equipment used in these studies. PubMed, WOS, and Scopus databases were reviewed up to December 2021. Scientific articles that evaluated muscle oxygenation after exercise interventions in the sick adult population were selected. The PEDro scale was used to analyze the risk of bias (internal validity). The results were presented grouped in tables considering the risk of bias scores, characteristics of the devices, and the effects of exercise on muscle oxygenation. All the stages were carried out using preferred reporting items for systematic reviews and meta-analyses (PRISMA). The search strategy yielded 820 clinical studies, of which 18 met the eligibility criteria. This review detailed the characteristics of 11 NIRS devices used in clinical trials that used physical exercise as an intervention. The use of this technology made it possible to observe changes in muscle oxygenation/deoxygenation parameters such as tissue saturation, oxyhemoglobin, total hemoglobin, and deoxyhemoglobin in clinical trials of patients with chronic disease. It was concluded that NIRS is a non-invasive method that can be used in clinical studies to detect the effects of physical exercise training on muscle oxygenation, hemodynamics, and metabolism. It will be necessary to unify criteria such as the measurement site, frequency, wavelength, and variables for analysis. This will make it possible to compare different models of exercise/training in terms of time, intensity, frequency, and type to obtain more precise conclusions about their benefits for patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available