4.7 Article

Individualized Wound Closure-Mechanical Properties of Suture Materials

Journal

JOURNAL OF PERSONALIZED MEDICINE
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/jpm12071041

Keywords

suture materials; crush load; mechanical properties; wound closure

Ask authors/readers for more resources

This study reviewed the physical properties of different suturing materials under mechanical load and found that the linear tensile strength decreased significantly with the increase in crushing load cycles. Different materials also exhibited varying resistance to crush loading.
Wound closure is a key element of any procedure, especially aesthetic and reconstructive plastic surgery. Therefore, over the last decades, several devices have been developed in order to assist surgeons in achieving better results while saving valuable time. In this work, we give a concise review of the literature and present a biomechanical study of different suturing materials under mechanical load mimicking handling in the operating theatre. Nine different suture products, all of the same USP size (4-0), were subjected to a standardized crushing load by means of a needle holder. All materials were subjected to 0, 1, 3 and 5 crushing load cycles, respectively. The linear tensile strength was measured by means of a universal testing device. Attenuation of tensile strength was evaluated between materials and between crush cycles. In the pooled analysis, the linear tensile strength of the suture materials deteriorated significantly with every cycle (p < 0.0001). The suture materials displayed different initial tensile strengths (in descending order: polyglecaprone, polyglactin, polydioxanone, polyamid, polypropylene). In comparison, materials performed variably in terms of resistance to crush loading. The findings were statistically significant. The reconstructive surgeon has to be flexible and tailor wound closure techniques and materials to the individual patient, procedure and tissue demands; therefore, profound knowledge of the physical properties of the suture strands used is of paramount importance. The crushing load on suture materials during surgery can be detrimental for initial and long-term wound repair strength. As well as the standard wound closure methods (sutures, staples and adhesive strips), there are promising novel devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available