4.7 Article

Highly hydrophobic silanized melamine foam for facile and uniform assembly of graphene nanoplatelet towards efficient light-to-thermal energy storage

Journal

MATERIALS TODAY ENERGY
Volume 28, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2022.101077

Keywords

Phase change material; Thermal energy storage; Latent heat; Shape stabilization; Solar energy

Funding

  1. Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education (MOHE), Malaysia [FP048-2019A]

Ask authors/readers for more resources

This study introduces a new approach for facile assembly of graphene nanoplatelet (GNP) to overcome the practical application issues of phase change materials (PCMs) in solar-thermal technology. The embedded GNP enhances the loading of paraffin wax and transition enthalpy, resulting in excellent solar-thermal storage efficiency.
Solar-thermal technology based on phase change materials (PCMs) has received a lot of attention as a cost-effective and practical way to overcome solar energy intermittency. However, weak photothermal conversion ability and complex preparation processes have hindered the practical application of PCMs. In this work, a new approach for facile, uniform, and firm assembly of graphene nanoplatelet (GNP) through the reaction of graphene oxide (GO) with the silanized melamine foam (MF) is introduced. Here, the deposited amino siloxane layer not only promotes the adhesion and integrity of embedded GNP/GO nanosheets but also facilitates the synthetic route compared to the previous studies. Following the reduction of GO with oleylamine (OA), the hybrid GNP/rGO foams with an integrated network were obtained. The composite PCMs were prepared through the incorporation of paraffin wax (PW) into the hybrid structure. The high hydrophobicity and porosity of the GNP/rGO foams resulted in a high loading of paraffin wax (nearly 97 wt%) and thus large transition enthalpy of 182 J g-1. The GNP/rGO framework provided excellent solar-thermal storage efficiency of up to 92.2%. The PCM composite containing the highest content of GNP (6 wt%) revealed an enhanced thermal conductivity by 87% compared to the unmodified MF/PW composite.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available