4.7 Article

The Contribution of the Vendee Globe Race to Improved Ocean Surface Information: A Validation of the Remotely Sensed Salinity in the Sub-Antarctic Zone

Journal

Publisher

MDPI
DOI: 10.3390/jmse10081078

Keywords

sea surface temperature; sea surface salinity; ocean circumnavigation; ships of opportunity; SMOS validation; sub-Antarctic zone

Funding

  1. European Union [840374]
  2. Spanish government [CEX2019-000928-S]

Ask authors/readers for more resources

This paper describes the use of sailing race measurements to validate satellite salinity products and emphasizes the importance of these measurements in providing valuable oceanographic information in regions where reliable measurements are not available.
The Vendee Globe is the world's most famous solo, non-stop, unassisted sailing race. The Institute of Marine Sciences and the Barcelona Ocean Sailing Foundation installed a MicroCAT on the One Ocean One Planet boat. The skipper, Didac Costa, completed the round trip in 97 days, from 8 November 2020 to 13 February 2021, providing one measurement of temperature and conductivity every 30 s during navigation. More than half of the ship's route was in the sub-Antarctic zone, between the tropical and polar fronts, and it passed through areas of oceanographic interest such as Southern Patagonia (affected by glacier melting), the Brazil-Malvinas confluence, the Southern Pacific Ocean, and the entire Southern Indian Ocean. This sailing race gave a rare opportunity to measure in-situ sea surface salinity in a region where satellite salinity measurements are not reliable. Due to the decreased sensitivity of brightness temperature to salinity in cold seas, retrieving sea surface salinity at high latitudes remains a major challenge. This paper describes how the data are processed and uses the data to validate satellite salinity products in the sub-Antarctic zone. The sailing race measurements represent surface information (60 cm depth) not available from drifters or Argo floats. Acquiring measurements using round-the-world sailing races would allow us to analyse the evolution of ocean salinity and the impact of changes in the ice extent around Antarctica.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available