4.1 Article

Trachyrhizium urniformis n. g., n. sp., a Novel Marine Filose Thecate Amoeba Related to a Cercozoan Environmental Clade (Novel Clade 4)

Journal

JOURNAL OF EUKARYOTIC MICROBIOLOGY
Volume 63, Issue 6, Pages 722-731

Publisher

WILEY-BLACKWELL
DOI: 10.1111/jeu.12319

Keywords

Cercozoa; phylogeny; SSU rRNA gene; Thecofilosea; ultrastructure

Categories

Funding

  1. JSPS KAKENHI Grant [13J00587]
  2. Grants-in-Aid for Scientific Research [15H04411, 13J00587] Funding Source: KAKEN

Ask authors/readers for more resources

A novel cercozoan filose thecate amoeba, Trachyrhizium urniformis n. g., n. sp., was isolated from a marine sediment sample collected at Agenashiku Island, Okinawa, Japan. We performed light and electron microscopic observations, and a molecular phylogenetic analysis using the small subunit ribosomal RNA gene of the isolate. Cells of T. urniformis are spherical in shape and are covered by a thin theca possessing a wide rounded aperture. Branching and occasionally anastomosing filopodia with small granules emerge from the aperture. The granules are transported in the filopodia bidirectionally. Transmission electron microscopy showed that cells of T. urniformis possess nucleus with permanently condensed chromatin, Golgi apparatuses, microbodies, mitochondria with tubular cristae, and extrusomes. Several morphological and ultrastructural features of T. urniformis (the presence of thecae and nucleus with permanently condensed chromatin) show similarities with those of Thecofilosea. In a phylogenetic analysis, T. urniformis included in Thecofilosea with weak statistical supports and formed a clade with two sequences that constitutes a cercozoan environmental clade, novel clade 4. On the basis of morphological and ultrastructural information and the results of the phylogenetic analysis, we propose T. urniformis as a new member of class Thecofilosea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available