4.6 Article

A Model for Radiolysis in a Flowing-Water Target during High-Intensity Proton Irradiation

Journal

ACS OMEGA
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c03540

Keywords

-

Funding

  1. U.S. Department of Energy Isotope Program [DE-SC0021220]
  2. U.S. Department of Energy (DOE) [DE-SC0021220] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

During the interaction between heavy-ion beams and beam-dump water, a wide variety of radionuclides are generated. In this study, the formation of hydrogen peroxide, molecular hydrogen, and molecular oxygen during high-intensity proton irradiation of a flowing-water isotope-harvesting target is investigated. The results show that homogeneous phase reactions have a significant impact on the overall chemical composition of the water in the high beam intensity regime.
At the Facility for Rare Isotope Beams (FRIB), interactions between heavy-ion beams and beam-dump water will create a wide variety of radionuclides which can be accessed by a technique known as isotope harvesting . However, irradiation of water is always accompanied by the creation of numerous radical, ionic, and molecular radiolysis products. Some of the radiolysis products have sufficiently long lifetimes to accumulate in the irradiated water and affect the harvesting chemistry. Here we investigate the formation of hydrogen peroxide, molecular hydrogen, and molecular oxygen during a high-intensity proton irradiation of a flowing-water isotope-harvesting target and compare the experimental results to simulations. The simulations kinetically model the chemical reactions occurring in the homogeneous phase of radiolysis in flowing water and establish an effective yield . In both the experiment and simulations, the bulk quantities of H-2, H2O2, and O-2 are considerably lower than predicted by primary radiolysis yields (escape yields), meaning that in the high beam intensity regime the homogeneous phase reactions have a considerable impact on the overall chemical composition of the water. Further, it could be shown that for radiation which is characterized by a limited linear energy transfer, such as the here applied protons, the bulk outcome of the microscopic kinetic modeling could be estimated by a simplified steady-state model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available