4.6 Article

Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance

Journal

ANTIBIOTICS-BASEL
Volume 11, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/antibiotics11070873

Keywords

nontuberculous mycobacteria; rapidly growing mycobacteria; macrolide resistance; erm(41) gene; multiresistance

Funding

  1. Czech Health Research Council [NU20-09-00114]

Ask authors/readers for more resources

The incidence of mycobacterioses caused by Mycobacterium abscessus is increasing, and correct identification of subspecies and determination of antibiotic sensitivity are crucial for disease management.
Mycobacterioses are less frequently occurring but serious diseases. In recent years, at a global level, the incidence of mycobacterioses induced by the rapidly growing species Mycobacterium abscessus (M. a.), which is considered to be the most resistant to antibiotics and most difficult to treat, has been on the rise. Correct identification to the level of the subspecies (M. a. abscessus, M. a. massiliense, and M. a. bolletii) and determination of its sensitivity to macrolides, which are the basis of combination therapy, are of principal importance for the management of the disease. We describe five cases of mycobacterioses caused by M. a., where the sequencing of select genes was performed to identify the individual subspecies and antibiotic resistance. The analysis of the rpoB gene showed two isolates each of M. a. abscessus and M. a. massiliense and one isolate of M. a. bolletii. The complete (full length) erm(41) gene responsible for the development of inducible resistance to macrolides was demonstrated in both M. a. abscessus and M. a. bolletii isolates. A partially deleted and non-functional erm(41) gene was demonstrated in M. a. massiliense isolates. The subsequent sequencing of the full length erm(41) gene products showed, however, the mutation (T28 -> C) in both isolates of M. a. abscessus, causing a loss of the function and preserved sensitivity to macrolides. The antibiotic sensitivity testing confirmed that both the isolates of M. a. abscessus and M. a. massiliense were sensitive to clarithromycin even after prolonged 14-day incubation. The inducible resistance to clarithromycin was maintained only in M. a. bolletii. Thus, the sequence analysis of the erm(41) gene can reliably identify the preservation of sensitivity to macrolides and serve as an important tool in the establishment of therapeutic regimens in cases of infections with M. abscessus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available