4.6 Article

Mapping CAR T-Cell Design Space Using Agent-Based Models

Journal

FRONTIERS IN MOLECULAR BIOSCIENCES
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2022.849363

Keywords

agent-based model; CAR T-cell; simulation; cell population dynamics; model-guided design; emergent dynamics

Funding

  1. National Science Foundation [DGE-1842165, CBET-1653315]
  2. Washington Research Foundation

Ask authors/readers for more resources

CAR T-cell therapy shows promise for treating both liquid cancers and solid tumors. However, testing all possible design choices for treatment is expensive and time-consuming. To address this, researchers extended a modeling framework to investigate the impact of different design choices on treatment outcomes, ultimately aiming to accelerate the development of effective treatment strategies.
Chimeric antigen receptor (CAR) T-cell therapy shows promise for treating liquid cancers and increasingly for solid tumors as well. While potential design strategies exist to address translational challenges, including the lack of unique tumor antigens and the presence of an immunosuppressive tumor microenvironment, testing all possible design choices in vitro and in vivo is prohibitively expensive, time consuming, and laborious. To address this gap, we extended the modeling framework ARCADE (Agent-based Representation of Cells And Dynamic Environments) to include CAR T-cell agents (CAR T-cell ARCADE, or CARCADE). We conducted in silico experiments to investigate how clinically relevant design choices and inherent tumor features-CAR T-cell dose, CD4(+):CD8(+) CAR T-cell ratio, CAR-antigen affinity, cancer and healthy cell antigen expression-individually and collectively impact treatment outcomes. Our analysis revealed that tuning CAR affinity modulates IL-2 production by balancing CAR T-cell proliferation and effector function. It also identified a novel multi-feature tuned treatment strategy for balancing selectivity and efficacy and provided insights into how spatial effects can impact relative treatment performance in different contexts. CARCADE facilitates deeper biological understanding of treatment design and could ultimately enable identification of promising treatment strategies to accelerate solid tumor CAR T-cell design-build-test cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available