4.5 Article

Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus

Journal

FLUIDS AND BARRIERS OF THE CNS
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12987-022-00335-x

Keywords

Cerebrospinal fluid; Membrane transport; CSF secretion; RNA sequencing; RNAseq; Bioinformatics; Transcriptomics; Choroid plexus

Categories

Funding

  1. Lundbeck Foundation [R276-2018-403, R303-2018-3005]

Ask authors/readers for more resources

This study provides important molecular tools for studying pathologies related to disturbed brain fluid homeostasis by analyzing the transcriptome of the choroid plexus in rats. The results show similarities in transport protein transcript abundance between species and provide a list of potential transport mechanisms and regulatory candidates involved in cerebrospinal fluid secretion.
Background Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus. Methods The transcriptomic profile of rat choroid plexus was generated by RNA Sequencing (RNAseq) of whole tissue and epithelial cells captured by fluorescence-activated cell sorting (FACS), and compared to proximal tubules. The bioinformatic analysis comprised mapping to reference genome followed by filtering for type, location, and association with alias and protein function. The transporters and associated regulatory modules were arranged in discovery tables according to their transcriptional abundance and tied together in association network analysis. Results The transcriptomic profile of choroid plexus displays high similarity between sex and species (human, rat, and mouse) and lesser similarity to another high-capacity fluid-transporting epithelium, the proximal tubules. The discovery tables provide lists of transport mechanisms that could participate in CSF secretion and suggest regulatory candidates. Conclusions With quantification of the transport protein transcript abundance in choroid plexus and their potentially linked regulatory modules, we envision a molecular tool to devise rational hypotheses regarding future delineation of choroidal transport proteins involved in CSF secretion and their regulation. Our vision is to obtain future pharmaceutical targets towards modulation of CSF production in pathologies involving disturbed brain water dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available