4.6 Article

Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics

Journal

MICROORGANISMS
Volume 10, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms10071311

Keywords

SARS-CoV-2; COVID-19; dried blood spots; multiplex serology; serolomics

Categories

Funding

  1. Dieter Morszeck Stiftung

Ask authors/readers for more resources

This study tested the compatibility of dried blood spot (DBS) samples with a bead-based multiplex serology assay for detecting SARS-CoV-2 antibodies. The results showed a high correlation between DBS samples and serum samples, and the classification of SARS-CoV-2 seropositivity remained consistent when adjusting the cutoffs. This technology enables powerful sero-epidemiological studies in resource-poor settings.
Numerous sero-epidemiological studies have been initiated to investigate the spread and dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address the concomitant need for serological high-throughput assays, a bead-based multiplex serology assay, specific for SARS-CoV-2, had been developed. SARS-CoV-2 serolomics allows for measuring antibody responses to almost the entire SARS-CoV-2 proteome in up to 2000 serum samples per day. To enlarge the pool of eligible sample collection methods, we here test the compatibility of serolomics with dried blood spot (DBS)-derived eluates. Antibody levels of nine SARS-CoV-2 antigens, including the nucleocapsid (N) and receptor-binding domain of the spike protein (S1-RBD), were measured in 142 paired DBS and serum samples. The numeric correlation between the two sample types was high, with a Pearson's r of 0.88 for both S1-RBD and N and intraclass correlation coefficients of 0.93 and 0.92, respectively. Systematically reduced antibody levels in DBS eluates were compensated by lowering the cutoffs for seropositivity accordingly. This enabled the concordant classification of SARS-CoV-2 seropositivity, without loss in sensitivity. Antibody levels against accessory SARS-CoV-2 antigens also showed a high concordance, demonstrating that DBS-derived eluates are eligible for SARS-CoV-2 serolomics. DBS cards facilitate the collection of blood samples, as they obviate the need for medically trained personnel and can be shipped at room temperature. In combination with SARS-CoV-2 serolomics, DBS cards enable powerful sero-epidemiological studies, thus allowing for the monitoring of patients and epidemiological analyses in resource-poor settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available