4.7 Article

The Effect of Paracrine Factors Released by Irradiated Peripheral Blood Mononuclear Cells on Neutrophil Extracellular Trap Formation

Journal

ANTIOXIDANTS
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/antiox11081559

Keywords

neutrophil; neutrophil extracellular traps (NETs); PAD4; ROS; secretome; peripheral blood mononuclear cell secretome

Funding

  1. Austrian Research Promotion Agency grant APOSEC [852748, 862068]
  2. Vienna Business Agency APOSEC to clinic [2343727]
  3. Aposcience AG

Ask authors/readers for more resources

This study found that PBMCsec can significantly inhibit the formation of NETs, possibly through antioxidant activity and inhibition of protein arginine deiminase 4 activity. For the current lack of treatment options for excessive NET formation, this study provides a promising novel treatment option.
Neutrophil extracellular trap (NET)-formation represents an important defence mechanism for the rapid clearance of infections. However, exaggerated NET formation has been shown to negatively affect tissue-regeneration after injury. As our previous studies revealed the strong tissue-protective and regenerative properties of the secretome of stressed peripheral blood mononuclear cells (PBMCsec), we here investigated the influence of PBMCsec on the formation of NETs. The effect of PBMCsec on NET formation was assessed ex vivo in ionomycin stimulated neutrophils derived from healthy donors using flow cytometry, image stream analysis, and quantification of released extracellular DNA. The effect of PBMCsec on molecular mechanisms involved in NET formation, including Ca-flux, protein kinase C activity, reactive oxygen species production, and protein arginine deiminase 4 activity, were analysed. Our results showed that PBMCsec significantly inhibited NET formation. Investigation of the different biological substance classes found in PBMCsec revealed only a partial reduction in NET formation, suggesting a synergistic effect. Mechanistically, PBMCsec treatment did not interfere with calcium signalling and PKC-activation, but exerted anti-oxidant activity, as evidenced by reduced levels of reactive oxygen species and upregulation of heme oxygenase 1 and hypoxia inducible-factor 1 in PBMCsec-treated neutrophils. In addition, PBMCsec strongly inhibited the activation of protein arginine deiminase 4 (PAD4), ultimately leading to the inhibition of NET formation. As therapeutics antagonizing excessive NET formation are not currently available, our study provides a promising novel treatment option for a variety of conditions resulting from exaggerated NET formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available