4.7 Article

Recognition of BRAF by CDC37 and Re-Evaluation of the Activation Mechanism for the Class 2 BRAF-L597R Mutant

Journal

BIOMOLECULES
Volume 12, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/biom12070905

Keywords

Hsp90; CDC37; BRAF; kinase; activation mechanism; chaperone; co-chaperone

Funding

  1. University of Sussex [RE009-23]
  2. Wellcome Trust [095605/Z/11/Z]
  3. Wellcome Trust [095605/Z/11/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

The study identified the interaction between CDC37 and BRAF and determined the crucial structural elements of CDC37 involved in BRAF recognition. The dimerization of BRAF can inhibit the recognition by CDC37, and the consequences of BRAF mutations on signaling were discussed.
The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, (HPNID)-H-20-SL-W-31, responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available