4.7 Article

Transfer mechanism of cell-free synthesized membrane proteins into mammalian cells

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2022.906295

Keywords

G-protein coupled receptors; cell-free expression; nanodiscs; Salipro nanoparticles; transfection; protein transfer; GPCR function; HEK 293 cell

Funding

  1. Center for Biomolecular Magnetic Resonance
  2. LOWE project GLUE of the state of Hessen
  3. DFG [BE 1911/8-1]

Ask authors/readers for more resources

Nanodiscs are a transfer vector for inserting recombinant membrane proteins into living cell membranes. This approach, combined with cell-free expression technologies, allows the analysis of challenging membrane proteins in complex cellular environments. The transfer process is efficient, controllable, and can be applied to different cell lines. Nanodiscs disassemble during transfer, and only lipids and membrane proteins are transferred into cell membranes. The transferred membrane proteins retain their functionality in the cell environment.
Nanodiscs are emerging to serve as transfer vectors for the insertion of recombinant membrane proteins into membranes of living cells. In combination with cell-free expression technologies, this novel process opens new perspectives to analyze the effects of even problematic targets such as toxic, hard-to-express, or artificially modified membrane proteins in complex cellular environments of different cell lines. Furthermore, transferred cells must not be genetically engineered and primary cell lines or cancer cells could be implemented as well. We have systematically analyzed the basic parameters of the nanotransfer approach and compared the transfer efficiencies from nanodiscs with that from Salipro particles. The transfer of five membrane proteins was analyzed: the prokaryotic proton pump proteorhodopsin, the human class A family G-protein coupled receptors for endothelin type B, prostacyclin, free fatty acids type 2, and the orphan GPRC5B receptor as a class C family member. The membrane proteins were cell-free synthesized with a detergent-free strategy by their cotranslational insertion into preformed nanoparticles containing defined lipid environments. The purified membrane protein/nanoparticles were then incubated with mammalian cells. We demonstrate that nanodiscs disassemble and only lipids and membrane proteins, not the scaffold protein, are transferred into cell membranes. The process is detectable within minutes, independent of the nanoparticle lipid composition, and the transfer efficiency directly correlates with the membrane protein concentration in the transfer mixture and with the incubation time. Transferred membrane proteins insert in both orientations, N-terminus in and N-terminus out, in the cell membrane, and the ratio can be modulated by engineering. The viability of cells is not notably affected by the transfer procedure, and transferred membrane proteins stay detectable in the cell membrane for up to 3 days. Transferred G-protein coupled receptors retained their functionality in the cell environment as shown by ligand binding, induction of internalization, and specific protein interactions. In comparison to transfection, the cellular membrane protein concentration is better controllable and more uniformly distributed within the analyzed cell population. A further notable difference to transfection is the accumulation of transferred membrane proteins in clusters, presumably determined by microdomain structures in the cell membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available