4.7 Article

Long-term culture of patient-derived cardiac organoids recapitulated Duchenne muscular dystrophy cardiomyopathy and disease progression

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2022.878311

Keywords

Duchenne muscular dystrophy; induced pluripotent stem cells; cardiomyopathy; cardiac organoids; disease modeling; aberrant adipogenesis; fibrosis

Funding

  1. FWO [G066821N]
  2. INTERREG-Euregio Meuse-Rhine [2020-EMR116]
  3. KU Leuven C1-3DMuSyC [C14/17/111]
  4. KU Leuven Rondoufonds voor Duchenne Onderzoek [EQQ-FODUCH-O2010]
  5. KU Leuven grant [C24/18/103]

Ask authors/readers for more resources

In this study, cardiac organoids were generated from patient-derived induced pluripotent stem cells to model Duchenne Muscular Dystrophy (DMD)-related cardiomyopathy. The organoids exhibited progressive loss of sarcoglycan localization, endoplasmic reticulum stress, cardiomyocyte deterioration, fibrosis, and aberrant adipogenesis over time. RNA sequencing analysis identified distinct transcriptomic profiles and crucial miRNAs associated with DMD-related cardiomyopathy. These findings suggest the potential for developing in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.
Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available