4.7 Article

Phylogenetic Analysis of Mitochondrial Genome of Tabanidae (Diptera: Tabanidae) Reveals the Present Status of Tabanidae Classification

Journal

INSECTS
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/insects13080695

Keywords

mitochondrial genome; Tabanidae; phylogenetic analyses; Chrysops; Haematopota; Tabanus

Categories

Funding

  1. science and technology plan medical and health category project of Shantou [2022001]
  2. National Natural Science Foundation of China [32072885]
  3. STU Scientific Research Foundation for Talents [NTF21043]

Ask authors/readers for more resources

Tabanidae feed on the blood of humans and animals, playing important roles as biological vectors for disease transmission with economic and medical significance. This study sequenced and analyzed six complete mitochondrial genomes from four genera of Tabanidae, showing similar structures and features. Phylogenetic analysis supported the monophyly of all groups, confirming the current taxonomic classification and providing useful genetic markers for molecular ecology, systematics, and population genetics research of Tabanidae.
Simple Summary Tabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. Therefore, six newly completed mitochondrial genomes of four genera of Tabanidae (Haematopota turkestanica, Chrysops vanderwulpi, Chrysops dissectus, Tabanus chrysurus, Tabanus pleskei, and Hybomitra sp. species) were sequenced and analyzed. The results show that the six newly mitochondrial genomes have quite similar structures and features. Phylogeny was inferred by analyzing the 13 amino acid sequences coded by mitochondrial genes of 22 mitogenomes (all available complete mitochondrial genomes of tabanidae). Bayesian inference, maximum likelihood trees, and maximum parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all groups, ratifies the current taxonomic classification, and provides useful genetic markers for studying the molecular ecology, systematics, and population genetics of Tabanidae. Tabanidae suck the blood of humans and animals, are important biological vectors for the transmission of diseases, and are of considerable economic and medical significance. However, current knowledge about the mitochondrial genome of this family is limited. More complete mitochondrial genomes of Tabanidae are essential for the identification and phylogeny. Therefore, this study sequenced and analyzed six complete mitochondrial (mt) genome sequences of four genera of Tabanidae for the first time. The complete mt genomes of the six new sequences are circular molecules ranging from 15,851 to 16,107 base pairs (bp) in size, with AT content ranging from 75.64 to 77.91%. The six complete mitochondrial genomes all consist of 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (RRNA), 22 transfer RNA genes (tRNAs), and a control region, making a total of 37 functional subunits. ATT/ATG was the most common start codon, and the stop codon was TAA of all PCGS. All tRNA except tRNA Ser1 had a typical clover structure. Phylogeny was inferred by analyzing the 13 concatenated amino acid sequences of the 22 mt genomes. Bayesian inference, maximum-likelihood trees, and maximum-parsimony inference analyses all showed consistent results. This study supports the concept of monophyly of all genus, ratifies the current taxonomic classification, and provides effective genetic markers for molecular classification, systematics, and genetic studies of Tabanidae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available