4.6 Article

In-Depth Understanding of ICD Completion Technology Working Principle

Journal

PROCESSES
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/pr10081493

Keywords

ICD; RCP; completion technologies; CFD; heavy oil; fluid-solid interaction; porous media flow

Funding

  1. Information and Technology Department of the University of Los Andes

Ask authors/readers for more resources

This article presents a numerical study on the working principle of rate-controlled production valves, providing a deep understanding of fluid dynamics near the wellbore, completion assembly, and RCP valves. It offers insights for future research on improving multiphase flow efficiency.
The rate-controlled production (RCP) inflow control devices (ICDs) are valves placed in the lower completion of oil and gas wells, capable of autonomously controlling the reservoir inflow. This completion technology self-regulates the inflow of undesired phases, such as water, by choking the flow after the breakthrough event, thus improving the recovery factor and reducing water production. In this context, this article presents a numerical study that describes the working principle of RCP valves based on a computational fluid dynamics (CFD) analysis. The numerical models are based on the conservation equations of fluid flow, the volume of fluid (VOF) multiphase flow model, and the dynamic fluid body interaction (DFBI) model to simulate the valve's movement caused by its interaction with the flow. This study demonstrates the possibility of studying RCP valves alone or coupled with the whole completion assembly and reservoir rock. The difference in the valve efficiency after considering the entire completion assembly and reservoir rock is 19% less compared with the stand-alone analysis of the valve. Finally, this study provides a deep understanding of the fluid dynamics near the wellbore, the completion assembly, and the RCP valves, along with its chocking, which could be helpful to future researchers interested in improving multiphase flow efficiency in subsurface processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available